Skip to main content Accessibility help
×
×
Home

Models for the two-phase flow of concentrated suspensions

  • TOBIAS AHNERT (a1), ANDREAS MÜNCH (a2) and BARBARA WAGNER (a1)

Abstract

A new two-phase model for concentrated suspensions is derived that incorporates a constitutive law combining the rheology for non-Brownian suspension and granular flow. The resulting model exhibits a yield-stress behaviour for the solid phase depending on the collision pressure. This property is investigated for the simple geometry of plane Poiseuille flow, where an unyielded or jammed zone of finite width arises in the centre of the channel. For the steady states of this problem, the governing equations are reduced to a boundary value problem for a system of ordinary differential equations and the conditions for existence of solutions with jammed regions are investigated using phase-space methods. For the general time-dependent case a new drift-flux model is derived using matched asymptotic expansions that takes into account the boundary layers at the walls and the interface between the yielded and unyielded region. The drift-flux model is used to numerically study the dynamic behaviour of the suspension flow, including the appearance and evolution of an unyielded or jammed regions.

Copyright

Footnotes

Hide All

AM is grateful for the support by KAUST (Award Number KUK-C1-013-04). TA and BW gratefully acknowledges the support by the Federal Ministry of Education (BMBF) and the state government of Berlin (SENBWF) in the framework of the program Spitzenforschung und Innovation in den Neuen Ländern (Grant Number 03IS2151).

Footnotes

References

Hide All
[1] Ahmadpour, A. & Sadeghy, K. (2013) An exact solution for laminar, unidirectional flow of Houska thixotropic fluids in a circular pipe. J. Non-Newton. Fluid Mech. 194, 2331.
[2] Ahnert, T. (2015) Mathematical Modeling of Concentrated Suspensions: Multiscale Analysis and Numerical Solutions. PhD Thesis, Technical University Berlin, November.
[3] Ahnert, T., Münch, A., Niethammer, B. & Wagner, B. (2018) Stability of concentrated suspensions under Couette and Poiseuille flow. J. Eng. Math. 127. https://doi.org/10.1007/s10665-018-9954-x
[4] Batchelor, G. K. & Green, J. T. (1972) The determination of the bulk stress in a suspension of spherical particles to order c 2. J. Fluid Mech. 56 (03), 401427.
[5] Boyer, F., Guazzelli, É. & Pouliquen, O. (2011) Unifying suspension and granular rheology. Phys. Rev. Lett. 107 (18), 188301.
[6] Brennen, C. E. (2005) Fundamentals of Multiphase Flow, Cambridge University Press, New York.
[7] Brinkman, H. C. (1949) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1 (1), 2734.
[8] Cartellier, A., Andreotti, M. & Sechet, P. (2009) Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number. Phys. Rev. E 80(6).
[9] Cassar, C., Nicolas, M. & Pouliquen, O. (2005) Submarine granular flows down inclined planes. Phys. Fluids 17 (10), 103301.
[10] W. Chow, A., Sinton, S. W., Iwamiya, J. H. & Stephens, T. S. (1994) Shear-induced particle migration in Couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys. Fluids 6 (8), 25612576.
[11] Cook, B. P., Bertozzi, A. L. & Hosoi, A. E. (2008) Shock solutions for particle-laden thin films. SIAM J. Appl. Math. 68 (3), 760783.
[12] de Bruyn, J. (2011) Unifying liquid and granular flow. Physics 4, 86.
[13] DeGiuli, E., Düring, G., Lerner, E. & Wyart, M. (2015) Unified theory of inertial granular flows and non-Brownian suspensions. Phys. Rev. E 91 (6), 062206.
[14] Drew, D. A. (1983) Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15 (1), 261291.
[15] Drew, D. A. (2001) A turbulent dispersion model for particles or bubbles. J. Eng. Math. 41 (2–3), 259274.
[16] Drew, D. A. & Passman, S. L. (1999) Theory of Multicomponent Fluids, Applied Mathematical Sciences, Vol. 135, Springer, New York.
[17] Drew, D. A. & Segel, L. A. (1971) Averaged equations for two-phase media. Stud. Appl. Math. 50 (2), 205231.
[18] Einstein, A. (1906) Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 324 (2), 289306.
[19] Fox, R. O. (2014) On multiphase turbulence models for collisional fluid-particle flows. J. Fluid Mech. 742, 368424.
[20] Gadalamaria, F. & Acrivos, A. (1980) Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24 (6), 799814.
[21] Garrido, P., Concha, F. & Bürger, R. (2003) Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions. Int. J. Mineral Process. 72, 5774.
[22] Hampton, R. E. (1997) Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41 (3), 621640.
[23] Hermes, M., Guy, B. M., Poon, W. C. K., Poy, G., Cates, M. E. & Wyart, M. (2016) Unsteady flow and particle migration in dense, non-Brownian suspensions. J. Rheol. 60 (5), 905916.
[24] Hormozi, S. & Frigaard, I. A. (2017) Dispersion of solids in fracturing flows of yield stress fluids. J. Fluid Mech. 830, 93137.
[25] Isa, L., Besseling, R. & Poon, W. C. K. (2007) Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Phys. Rev. Lett. 98, 198305.
[26] Ishii, M. & Hibiki, T. (2011) Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York.
[27] James, N., Han, E., Jureller, J. & Jaeger, H. (2017) Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. arXiv:1707.09401v1 [cond-mat].
[28] Jenkins, J. T. & McTigue, D. F. (1990) Transport processes in concentrated suspensions: The role of particle fluctuations. In: Joseph, D. D. and Schaeffer, D. G. (editors), Two Phase Flows and Waves, The IMA Volumes in Mathematics and Its Applications, Vol. 26, Springer, New York, pp. 7079.
[29] Keyfitz, B. L., Sanders, R. & Sever, M. (2003) Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete Continuous Dyn. Syst. – Series B 3 (4), 541563.
[30] Kolev, N. I. (2005) Multiphase Flow Dynamics 1: Fundamentals, Multiphase Flow Dynamics, Springer-Verlag, Berlin Heidelberg.
[31] Leighton, D. & Acrivos, A. (1987) Shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181 (1), 415439.
[32] Lhuillier, D., Chang, C.-H. & Theofanous, T. G. (2013) On the quest for a hyperbolic effective-field model of disperse flows. J. Fluid Mech. 731, 184194.
[33] Miller, R. M. & Morris, J. F. (2006) Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J. Non-Newton. Fluid Mech. 135 (2–3), 149165.
[34] Miller, R. M., Singh, J. P. & Morris, J. F. (2009) Suspension flow modeling for general geometries. Chem. Eng. Sci. 64 (22), 45974610.
[35] Morris, J. F. & Boulay, F. (1999) Curvilinear flows of noncolloidal suspensions: The role of normal stresses. J. Rheol. 43, 12131237.
[36] Murisic, N., Pausader, B., D. Peschka & Bertozzi, A. L. (2013) Dynamics of particle settling and resuspension in viscous liquid films. J. Fluid Mech. 717, 203231.
[37] Nott, P. R. & Brady, J. F. (1994) Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275 (1), 157199.
[38] Oh, S., Song, Y.-Q., Garagash, D. I., Lecampion, B. & Desroches, J. (2015) Pressure-driven suspension flow near jamming. Phys. Rev. Lett. 114(8).
[39] Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L. & Abbott, J. R. (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4 (1), 3040.
[40] Prosperetti, A. & Jones, A. (1987) The linear stability of general two-phase flow models – II. Int. J. Multiphase Flow 13 (2), 161171.
[41] Quemada, D. (1997) Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited. Eur. Phys. J. Appl. Phys. 1, 119127.
[42] Quemada, D. (1998) Rheological modeling of complex fluids: III. Dilatant behavior of stabilized suspensions. Eur. Phys. J. Appl. Phys. 3, 309320.
[43] Quemada, D. (1998) Rheological modelling of complex fluids: II. Shear thickening behavior due to shear induced flocculation. Eur. Phys. J. Appl. 2, 175181.
[44] Quemada, D. (1999) Rheological modelling of complex fluids: IV: Thixotropic and “thixoelastic” behaviour. Start-up and stress relaxation, creep tests and hysteresis cycles. Eur. Phys. J. Appl. Phys. 5 (2), 191207.
[45] Ramachandran, A. (2013) A macrotransport equation for the particle distribution in the flow of a concentrated, non-colloidal suspension through a circular tube. J. Fluid Mech. 734, 219252.
[46] Snook, B., Butler, J. E. & Guazzelli, É. (2016) Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow. J. Fluid Mech. 786, 128153.
[47] Stickel, J. J. & Powell, R. L. (2005) Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37 (1), 129149.
[48] Trulsson, M., Andreotti, B. & Claudin, P. (2012) Transition from the viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109 (11), 118305.
[49] Whitaker, S. (1986) Flow in porous media I: A theoretical derivation of Darcy's law. Trans. Porous Media 1 (1), 325.
[50] Whitaker, S. (1998) The Method of Volume Averaging, Vol. 13, Springer, Netherlands, in: “Theory and Applications of Transport in Porous Media”.
[51] Wyart, M. & Cates, M. E. (2014) Discontinuous shear thickening without inertia in dense non-brownian suspensions. Phys. Rev. Lett. 112, 098302.
[52] Wylie, J. J., Koch, D. L. & Ladd, A. J. C. (2003) Rheology of suspensions with high particle inertia and moderate fluid inertia. J. Fluid Mech. 480, 95118.
[53] Yapici, K., Powell, R. L. & Phillips, R. J. (2009) Particle migration and suspension structure in steady and oscillatory plane Poiseuille flow. Phys. Fluids 21 (5), 053302.
[54] Zhou, J., Dupuy, B., Bertozzi, A. & Hosoi, A. (2005) Theory for shock dynamics in particle-laden thin films. Phys. Rev. Lett. 94 (11), 117803.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed