[1] Ahmadpour, A. & Sadeghy, K. (2013) An exact solution for laminar, unidirectional flow of Houska thixotropic fluids in a circular pipe. J. Non-Newton. Fluid Mech. 194, 23–31.

[2] Ahnert, T. (2015) *Mathematical Modeling of Concentrated Suspensions: Multiscale Analysis and Numerical Solutions*. PhD Thesis, Technical University Berlin, November.

[4] Batchelor, G. K. & Green, J. T. (1972) The determination of the bulk stress in a suspension of spherical particles to order *c* ^{2}. J. Fluid Mech. 56 (03), 401–427.

[5] Boyer, F., Guazzelli, É. & Pouliquen, O. (2011) Unifying suspension and granular rheology. Phys. Rev. Lett. 107 (18), 188301.

[6] Brennen, C. E. (2005) Fundamentals of Multiphase Flow, Cambridge University Press, New York.

[7] Brinkman, H. C. (1949) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1 (1), 27–34.

[8] Cartellier, A., Andreotti, M. & Sechet, P. (2009) Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number. Phys. Rev. E 80(6).

[9] Cassar, C., Nicolas, M. & Pouliquen, O. (2005) Submarine granular flows down inclined planes. Phys. Fluids 17 (10), 103301.

[10] W. Chow, A., Sinton, S. W., Iwamiya, J. H. & Stephens, T. S. (1994) Shear-induced particle migration in Couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys. Fluids 6 (8), 2561–2576.

[11] Cook, B. P., Bertozzi, A. L. & Hosoi, A. E. (2008) Shock solutions for particle-laden thin films. SIAM J. Appl. Math. 68 (3), 760–783.

[12] de Bruyn, J. (2011) Unifying liquid and granular flow. Physics 4, 86.

[13] DeGiuli, E., Düring, G., Lerner, E. & Wyart, M. (2015) Unified theory of inertial granular flows and non-Brownian suspensions. Phys. Rev. E 91 (6), 062206.

[14] Drew, D. A. (1983) Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15 (1), 261–291.

[15] Drew, D. A. (2001) A turbulent dispersion model for particles or bubbles. J. Eng. Math. 41 (2–3), 259–274.

[16] Drew, D. A. & Passman, S. L. (1999) Theory of Multicomponent Fluids, Applied Mathematical Sciences, Vol. 135, Springer, New York.

[17] Drew, D. A. & Segel, L. A. (1971) Averaged equations for two-phase media. Stud. Appl. Math. 50 (2), 205–231.

[18] Einstein, A. (1906) Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 324 (2), 289–306.

[19] Fox, R. O. (2014) On multiphase turbulence models for collisional fluid-particle flows. J. Fluid Mech. 742, 368–424.

[20] Gadalamaria, F. & Acrivos, A. (1980) Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24 (6), 799–814.

[21] Garrido, P., Concha, F. & Bürger, R. (2003) Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions. Int. J. Mineral Process. 72, 57–74.

[22] Hampton, R. E. (1997) Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41 (3), 621–640.

[23] Hermes, M., Guy, B. M., Poon, W. C. K., Poy, G., Cates, M. E. & Wyart, M. (2016) Unsteady flow and particle migration in dense, non-Brownian suspensions. J. Rheol. 60 (5), 905–916.

[24] Hormozi, S. & Frigaard, I. A. (2017) Dispersion of solids in fracturing flows of yield stress fluids. J. Fluid Mech. 830, 93–137.

[25] Isa, L., Besseling, R. & Poon, W. C. K. (2007) Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Phys. Rev. Lett. 98, 198305.

[26] Ishii, M. & Hibiki, T. (2011) Thermo-Fluid Dynamics of Two-Phase Flow, Springer, New York.

[27] James, N., Han, E., Jureller, J. & Jaeger, H. (2017) Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. arXiv:1707.09401v1 [cond-mat].

[28] Jenkins, J. T. & McTigue, D. F. (1990) Transport processes in concentrated suspensions: The role of particle fluctuations. In: Joseph, D. D. and Schaeffer, D. G. (editors), Two Phase Flows and Waves, The IMA Volumes in Mathematics and Its Applications, Vol. 26, Springer, New York, pp. 70–79.

[29] Keyfitz, B. L., Sanders, R. & Sever, M. (2003) Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete Continuous Dyn. Syst. – Series B 3 (4), 541–563.

[30] Kolev, N. I. (2005) Multiphase Flow Dynamics 1: Fundamentals, Multiphase Flow Dynamics, Springer-Verlag, Berlin Heidelberg.

[31] Leighton, D. & Acrivos, A. (1987) Shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181 (1), 415–439.

[32] Lhuillier, D., Chang, C.-H. & Theofanous, T. G. (2013) On the quest for a hyperbolic effective-field model of disperse flows. J. Fluid Mech. 731, 184–194.

[33] Miller, R. M. & Morris, J. F. (2006) Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J. Non-Newton. Fluid Mech. 135 (2–3), 149–165.

[34] Miller, R. M., Singh, J. P. & Morris, J. F. (2009) Suspension flow modeling for general geometries. Chem. Eng. Sci. 64 (22), 4597–4610.

[35] Morris, J. F. & Boulay, F. (1999) Curvilinear flows of noncolloidal suspensions: The role of normal stresses. J. Rheol. 43, 1213–1237.

[36] Murisic, N., Pausader, B., D. Peschka & Bertozzi, A. L. (2013) Dynamics of particle settling and resuspension in viscous liquid films. J. Fluid Mech. 717, 203–231.

[37] Nott, P. R. & Brady, J. F. (1994) Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275 (1), 157–199.

[38] Oh, S., Song, Y.-Q., Garagash, D. I., Lecampion, B. & Desroches, J. (2015) Pressure-driven suspension flow near jamming. Phys. Rev. Lett. 114(8).

[39] Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L. & Abbott, J. R. (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4 (1), 30–40.

[40] Prosperetti, A. & Jones, A. (1987) The linear stability of general two-phase flow models – II. Int. J. Multiphase Flow 13 (2), 161–171.

[41] Quemada, D. (1997) Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited. Eur. Phys. J. Appl. Phys. 1, 119–127.

[42] Quemada, D. (1998) Rheological modeling of complex fluids: III. Dilatant behavior of stabilized suspensions. Eur. Phys. J. Appl. Phys. 3, 309–320.

[43] Quemada, D. (1998) Rheological modelling of complex fluids: II. Shear thickening behavior due to shear induced flocculation. Eur. Phys. J. Appl. 2, 175–181.

[44] Quemada, D. (1999) Rheological modelling of complex fluids: IV: Thixotropic and “thixoelastic” behaviour. Start-up and stress relaxation, creep tests and hysteresis cycles. Eur. Phys. J. Appl. Phys. 5 (2), 191–207.

[45] Ramachandran, A. (2013) A macrotransport equation for the particle distribution in the flow of a concentrated, non-colloidal suspension through a circular tube. J. Fluid Mech. 734, 219–252.

[46] Snook, B., Butler, J. E. & Guazzelli, É. (2016) Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow. J. Fluid Mech. 786, 128–153.

[47] Stickel, J. J. & Powell, R. L. (2005) Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37 (1), 129–149.

[48] Trulsson, M., Andreotti, B. & Claudin, P. (2012) Transition from the viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109 (11), 118305.

[49] Whitaker, S. (1986) Flow in porous media I: A theoretical derivation of Darcy's law. Trans. Porous Media 1 (1), 3–25.

[50] Whitaker, S. (1998) The Method of Volume Averaging, Vol. 13, Springer, Netherlands, in: “Theory and Applications of Transport in Porous Media”.

[51] Wyart, M. & Cates, M. E. (2014) Discontinuous shear thickening without inertia in dense non-brownian suspensions. Phys. Rev. Lett. 112, 098302.

[52] Wylie, J. J., Koch, D. L. & Ladd, A. J. C. (2003) Rheology of suspensions with high particle inertia and moderate fluid inertia. J. Fluid Mech. 480, 95–118.

[53] Yapici, K., Powell, R. L. & Phillips, R. J. (2009) Particle migration and suspension structure in steady and oscillatory plane Poiseuille flow. Phys. Fluids 21 (5), 053302.

[54] Zhou, J., Dupuy, B., Bertozzi, A. & Hosoi, A. (2005) Theory for shock dynamics in particle-laden thin films. Phys. Rev. Lett. 94 (11), 117803.