Skip to main content Accessibility help
×
Home

Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin

  • HUA NIE (a1) and JIANHUA WU (a1)

Abstract

We investigate the effects of toxins on the multiple coexistence solutions of an unstirred chemostat model of competition between plasmid-bearing and plasmid-free organisms when the plasmid-bearing organism produces toxins. It turns out that coexistence solutions to this model are governed by two limiting systems. Based on the analysis of uniqueness and stability of positive solutions to two limiting systems, the exact multiplicity and stability of coexistence solutions of this model are established by means of the combination of the fixed-point index theory, bifurcation theory and perturbation theory.

Copyright

References

Hide All
[1]Amann, H. (2004) Maximum principles and principal eigenvalues. In: Ferrera, J., López-Gómez, J. and Ruiz del Portal, F. R. (editors), Ten Mathematical Essays on Approximation in Analysis and Topology, Elsevier, Atlanta, GA, pp. 160.
[2]Belgacem, F. (1997) Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Addison Wesley Longman, Harlow, UK.
[3]Chao, L. & Levin, B. R. (1981) Structured habitats and the evolution of anti-competitor toxins in bacteria. Proc. Nat. Acad. Sci. 75), 63246328.
[4]Crandall, M. G. & Rabinowitz, P. H. (1973) Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161180.
[5]Figueiredo, D. G. & Gossez, J. P. (1992) Strict monotonicity of eigenvalues and unique continuation. Comm. Partial Differ. Equ. 17, 339346.
[6]Hess, P. (1991) Periodic Parabolic Boundary Value Problems and Positivity, Longman, Harlow, UK.
[7]Hsu, S. B., Li, Y. S. & Waltman, P. (2000) Competition in the presence of a lethal external inhibitor. Math. Biosci. 167, 177199.
[8]Hsu, S. B., Luo, T. K. & Waltman, P. (1995) Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor. J. Math. Biol. 34, 225238.
[9]Hsu, S. B. & Waltman, P. (1992) Analysis of a model of two competitors in a chemostat with an external inhibitor. SIAM J. Appl. Math. 52, 528540.
[10]Hsu, S. B. & Waltman, P. (1993) On a system of reaction-diffusion equations arising from competition in an unstirred chemostat. SIAM J. Appl. Math. 53, 10261044.
[11]Hsu, S. B. & Waltman, P. (1997) Competition between plasmid-bearing and plasmid-free organisms in selective media. Chem. Engrg. Sci. 52 (1), 2335.
[12]Hsu, S. B. & Waltman, P. (1998) Competition in the chemostat when one competitor produces a toxin. Japan J. Ind. Appl. Math. 15, 471490.
[13]Hsu, S. B. & Waltman, P. (2002) A model of the effect of anti-competitor toxins on plasmid-bearing, plasmid-free compettion. Taiwanese J. Math. 6, 135155.
[14]Hsu, S. B. & Waltman, P. (2004) A survey of mathematical models of competition with an inhibitor. Math. Biosci. 187, 5391.
[15]Hsu, S. B., Waltman, P. & Wolkowicz, G. S. K. (1994) Global analysis of a model of plasmid-bearing, plasmid-free competition in the chemostat. J. Math. Biol. 32, 731742.
[16]Kato, T. (1966) Perturbation Theory of Linear Operators, Springer, Berlin, Germany.
[17]Lenski, R. E. & Hattingh, S. (1986) Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics. J. Theoret. Biol. 122, 8393.
[18]Levin, B. R. (1988) Frequency-dependent selection in bacterial population. Phil. Trans. R. Soc. Lond. 319, 459472.
[19]López-Gómez, J. & Molina-Meyer, M. (1994) The maximum principle for cooperative weakly coupled elliptic systems and some applications. Differ. Integral Equ. 7, 383398.
[20]Nie, H. & Wu, J. (2006) A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor. Int. J. Bifurcation Chaos 16 (4), 9891009.
[21]Nie, H. & Wu, J. (2007) Asymptotic behaviour of an unstirred chemostat with internal inhibitor. J. Math. Anal. Appl. 334, 889908.
[22]Nie, H. & Wu, J. (2012) The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat. Discrete Contin. Dyn. Syst. 32 (1), 303329.
[23]Stephanopoulos, G. & Lapidus, G. (1988) Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures. Chem. Engng Sci. 43, 4957.
[24]Schaefer, H. H. (1966) Topological Vector Spaces, Macmillan, New York, NY.
[25]Wu, J. (2000) Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Anal. 39, 817835.
[26]Wu, J., Nie, H. & Wolkowicz, G. S. K. (2007) The effect of inhibitor on the plasmid-bearing and plasmid-free chemostat model. SIAM J. Math. Anal. 38, 18601885.
[27]Xuang, X. C., Zhu, L. M. & Chang, E. H. C. (2006) The 3D Hoph bifurcation in bio-reactor when one competitor produces a toxin. Nonlinear Anal. Real World Appl. 7, 11671177.
[28]Zhu, L. M., Huang, X. C. & Su, H. Q. (2007) Bifurcation for a functional yield chemostat when one competitor produces a toxin. J. Math. Anal. Appl. 329, 891903.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed