Skip to main content

Nano-scale MOSFET device modelling with quantum mechanical effects


The continuing down-scaling trend of CMOS technology has brought serious deterioration in the accuracy of the SPICE (Simulation Program with Integrated Circuit Emphasis) device models used in the design of chip functions. This is due to in part to hot electron and quantum effects that occur in modern nano-scale MOSFET devices [13, 25, 28, 33, 34]. The focus of this paper is on modeling quantum confinement effects based on the Density-Gradient (DG) model [6, 9, 14], for application in SPICE. Analytic 1-D quantum mechanical (QM) effects correction formulae for the MOSFET inversion charge and electrostatic potential are derived from the DG model using matched asymptotic expansion techniques. Comparison of these new models with numerical data shows good results.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 52 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.