Skip to main content Accessibility help
×
×
Home

On a two-phase continuous casting Stefan problem with nonlinear flux

  • José Francisco Rodrigues (a1) and Fahuai Yi (a2)
Abstract

We prove the existence of a weak solution for a two-phase continuous casting Stefan problem with a general monotone nonlinear cooling condition. We establish a sufficient condition for stability, which yields uniqueness and comparison results for the evolutionary and the steady- state solutions. We also discuss the asymptotic behaviour as t←∞ of the corresponding temperatures and enthalpies.

Copyright
References
Hide All
BriéRe, T. 1980 Application des méthodes variationelles ´ la cristallisation d'un metal par passage dans une game de refroidissement. Ann. Fac. Sc. Toulouse 2, 219247.
Cannon, J. R. & Dibenedetto, E. 1980 On the existence of weak solutions to an n–dimensional Stefan problem with nonlinear boundary conditions. SIAM J. Math. Anal. 11, 632645.
Chipot, M. & Rodrigues, J. F. 1983 On the steady-state continuous casting Stefan problem with non-linear cooling. Quart. Appi. Math. 40, 476491.
Damlamian, A. 1977 Some results on the multiple-phase Stefan problem. Comm. P.D.E. 2, 10171044 (also Thése, Univ. Paris VI, 1976).
Damlamian, A. & Kenmochi, N. 1986 Asymptotic behaviour of solutions to a multi-phase Stefan problem. Japan J. Appl. Math. 3, 1536.
Danilyuk, I. I.On the Stefan problem. Russian Math. Surveys 40 (5), 157223.
DiBenedetto, E. 1982 Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl. (4), 130, 131176.
DiBenedetto, E. 1986 A boundary modulus of continuity for a class of singular parabolic equations. J. Diff Eq. 63, 418447.
DiBenedetto, E. & Friedman, A. 1986 Periodic behaviour for the evolutionary dam problem and related free boundary problems. Comm. P.D.E. 11, 12971377.
Friedman, A. 1968 The Stefan problem in several space variables. Trans. Amer. Math. Soc. 133, 5187.
Kamenostkaya, S. 1958 On the Stefan problem (in Russian), Naučnye Doki. Vysšel Školy 1, 6062
Kamenostkaya, S.On the Stefan problem (in Russian), (Mat. Sb). 53 (95) (1961), 489514.
Ladyzenskaya, O. A., Solonnikov, V. A. & Ural'eva, N. N. 1968 Linear and Quasilinear Equations of Parabolic Type, A.M.S. Transl. Monog. 23, Providence.
Lions, J. L. 1969 Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod: Paris.
Meirmanov, A. M. 1986 Stefan Problems (in Russian), Nauka: Novosibirsk.
Niezgodka, N. & Pawlow, I. 1983 A generalized Stefan problem in several space variables. Appl. Math. Optim. 9, 193224.
Oleinik, O. A. 1960 A method of solution of the general Stefan problem. Soy. Math. Dokl. 1, 13501354.
Rodrigues, J. F. 1985 Aspects of the Variational Approach to the Continuous Casting Problem, pp. 7283. In Research Notes in Match (Pitman) 120.
Rodrigues, J. F. 1986 An evolutionary continuous casting problem of Stefan type. Quart. Appl. Math. 44, 109131.
Rodrigues, J. F. 1989 The Stefan problem revisited. In Mathematical models for Phase Change Problems (ed. Rodrigues, J. F.), pp. 129190. ISNM vol. 88, Birkhäuser Verlag: Basel.
Rulla, J. 1987 Weak solutions to Stefan problems with prescribed convection. SIAM J. Math. Anal. 18, 17841800.
Stampacchia, G. 1960 Problemi al contorno elliptici con datti discontinui dotati di soluzioni holderiane. Annali Math. Pura Appl. 51, 132.
Visintin, A. 1981 Sur le probléme de Stefan avec flux non linéaire. Boll. UMI C. 18, 6386.
Yi, F. 1989 An evolutionary continuous casting problem of two-phase and its periodic behaviour. J. J. Part. Diff Eq. 2 (3), 722.
Zaltzman, B. 1989 Multidimensional two-phase quasistationary Stefan problem in an unbounded region. Pre-print of Novosibirsk State University.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed