Skip to main content

On an asymptotic formula for the maximum voltage drop in a on-chip power distribution network


We present a new asymptotic formula for the maximum static voltage in a simplified model for on-chip power distribution networks of array bonded integrated circuits. In this model the voltage is the solution of the Poisson's equation in an infinite planar domain whose boundary is an array of circular pads of radius ϵ, and we deal with the singular limit ϵ → 0 case. In comparison with approximations that appear in the electronics engineering literature, our formula is more complete, since we have obtained terms up to order ϵ15. A procedure will be presented to compute all the successive terms, which can be interpreted by using multipole solutions of equations involving spatial derivatives of δ-functions. To deduce the formula, we use the method of matched asymptotic expansions. Our results are completely analytical and we make an extensive use of special functions and the Gauss constant G.

Hide All
[1]Abramowitz, M. & Stegun, I. A. (1972) Handbook of Mathematical Functions, Dover Publications, New York.
[2]Aguareles, M., Blasco, J., Pellicer, M. & Solà-Morales, J. (2009) Voltage drop in on-chip power distribution networks. In: Alabert, A., Saludes, J. and Solà-Morales, J. (editors), Grups d'Estudi de Matemàtica i Tecnologia, Centre de Recerca Matemàtica, Bellaterra, Barcelona, Spain, pp. 4560.
[3]Arledge, L. A. Jr. & Lynch, W. T. (1998) Scaling and performance implications for power supply and other signal routing constraints imposed by I/O Pad limitations. In: Proceedings of the IEEE Symposium on IC/Package Design Intergration, Santa Cruz, CA, USA, 2–3 Feb., pp. 4550.
[4]Bender, C. M. & Orszag, S. A. (1999) Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory, Springer, New York.
[5]Clement, J. J. (2001) Electromigration modeling for integrated circuit interconnect reliability analysis. IEEE Trans. Device Mater. Reliab. 1 (1), 3342.
[6]Dieckmann, A.Collection of Infinite Products and Series, Physikalisches Institut der Universitat Bonn (
[7]Finch, R. (2003) Mathematical Constants, Cambridge University Press, Cambridge, UK.
[8]Gradshteyn, I. S. & Ryzhik, I. M. (1965) Table of Integrals, Series and Products, Academic Press, Maryland Heights, MO.
[9]Hinch, E. J. (1991) Perturbation Methods, Cambridge University Press, Cambridge, UK.
[10]Jackson, J. D. (1975) Classical Electrodynamics, 2nd ed., Wiley, New York.
[11]Koblitz, N. (1984) Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, New York.
[12]Kolokolnikov, T., Titcombe, M. S. & Ward, M. J. (2005) Optimizing the fundamental Neumann Eigenvalue for the laplacian in a domain with small traps. Eur. J. Appl. Math. 16 (2), 161200.
[13]Pillay, S., Ward, M. J., Pierce, A. & Kolokolnikov, T. (2010) An asymptotic analysis of the mean first passage time for narrow escape problems. Part I: Two-dimensional domains. Multiscale Model. Simul. 8 (3), 803835.
[14]Popovich, M., Mezhiba, A. V. & Friedman, E. G. (2008) Power Distribution Networks with On-Chip Decoupling Capacitors, Springer-Verlag, New York.
[15]Shakeri, K. & Meindl, J. D. (2005) Compact physical IR-drop models for chip/package co-design of Gigascale integration (GSI). IEEE Trans. Electron Devices 52 (6), 10871096.
[16]Straube, R., Ward, M. J. & Falcke, M.Reaction rate of small diffusing molecules on a cylindrical membrane. J. Stat. Phys. 129, 377405.
[17]Torney, D. C. & Goldstein, B. (1987) Rates of diffusion-limited reaction in periodic systems. J. Stat. Phys. 49 (3/4), 725749.
[18]Van Dyke, M. (1975) Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA.
[19]Whittaker, E. T. & Watson, G. N. (1952) A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge, UK.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 108 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th March 2018. This data will be updated every 24 hours.