Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T18:02:00.452Z Has data issue: false hasContentIssue false

On periodic Stokesian Hele-Shaw flows with surface tension

Published online by Cambridge University Press:  01 December 2008

J. ESCHER
Affiliation:
Institute of Applied Mathematics, Leibniz University of Hanover, Welfengarten 1, D-30167 Hanover, Germany email: escher@ifam.uni-hannover.de; matioc@ifam.uni-hannover.de
B.-V. MATIOC
Affiliation:
Institute of Applied Mathematics, Leibniz University of Hanover, Welfengarten 1, D-30167 Hanover, Germany email: escher@ifam.uni-hannover.de; matioc@ifam.uni-hannover.de

Abstract

In this paper we consider a 2π-periodic and two-dimensional Hele-Shaw flow describing the motion of a viscous, incompressible fluid. The free surface is moving under the influence of surface tension and gravity. The motion of the fluid is modelled using a modified version of Darcy's law for Stokesian fluids. The bottom of the cell is assumed to be impermeable. We prove the existence of a unique classical solution for a domain which is a small perturbation of a cylinder. Moreover, we identify the equilibria of the flow and study their stability.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Amann, H. (1995) Linear and Quasilinear Parabolic Problems, Vol. I, Birkhäuser, Basel, Switzerland.Google Scholar
[2]Arendt, W. & Bu, S. (2004) Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society 47, 1533.CrossRefGoogle Scholar
[3]Escher, J. (1997) On moving boundaries in deformable media. Adv. Math. Sci. Appl. 7 (1), 275316.Google Scholar
[4]Escher, J. & Matioc, B.-V. (2008) A moving boundary problem for periodic Stokesian Hele-Shaw flows, Interfaces and Free Boundaries, to appear.Google Scholar
[5]Escher, J. & Matioc, B.-V. (2008) Stability of the equilibria for periodic Stokesian Hele-Shaw flows. J. Evol. Eq., online 8.7.2008.CrossRefGoogle Scholar
[6]Escher, J. & Prokert, G. (2001) Stability of the equilibria for spatially periodic flows in porous media. Nonlin. Anal. 45, 10611080.Google Scholar
[7]Escher, J. & Simonett, G. (1991) Maximal regularity for a free boundary problem. Nonlin. Diff. Eq. Appl. 2, 463510.Google Scholar
[8]Escher, J. & Simonett, G. (1996) Analyticity of the interface in a free boundary problem. Math. Ann. 305, 435459.Google Scholar
[9]Escher, J. & Simonett, G. (1997) Classical solutions of multidimensional Hele-Shaw models. SIAM J. Math. Anal. 28 (5), 10281047.Google Scholar
[10]Gilbarg, D. & Trudinger, T. S. (1997) Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York.Google Scholar
[11]Kondic, L., Palffy-Mahorny, P. & Shelley, M. J. (1996) Models of non-Newtonian Hele-Shaw flow. Phys. Rev. E 54 (5), R4536R4539.Google Scholar
[12]Lunardi, A. (1995) Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, Switzerland.Google Scholar
[13]Schmeisser, H.-J. & Triebel, H. (1987) Topics in Fourier Analysis and Function Spaces, John Wiley and Sons, New York.Google Scholar
[14]Shaughnessy, E. J., Katz, I. M. & Schaffer, J. P. (2005) Introduction to Fluid Mechanics, Oxford University Press, New York.Google Scholar