[1]Amudevar, A. (2001) A dynamic programming algorithm for the optimal control of piecewise deterministic Markov processes. SIAM J. Control Optim. 40, 525–539.

[2]Annunziato, M. (2002) Non-Gaussian equilibrium distributions arising from the Langevin equation. Phys. Rev. E 65, 21113 (1–6).

[3]Annunziato, M. (2007) A finite difference method for piecewise deterministic processes with memory. Math. Mod. Anal. 12, 157–178.

[4]Annunziato, M. (2008) Analysis of upwind method for piecewise deterministic Markov processes. Comp. Meth. Appl. Math. 8, 3–20.

[5]Annunziato, M. (2012) On the action of a semi-Markov process on a system of ordinary differential equations. Math. Mod. Anal. 17, 650–672.

[6]Annunziato, M. & Borzì, A. (2010) Optimal control of probability density functions of stochastic processes. Math. Mod. Anal. 15, 393–407.

[7]Annunziato, M. & Borzì, A. (2013) A Fokker–Planck control framework for multidimensional stochastic processes. J. Comput. Appl. Math. 237, 487–507.

[8]Annunziato, M., Grigolini, P. & West, B. J. (2001) Canonical and noncanonical equilibrium distribution. Phys. Rev. E 66, 011107 (1–13).

[9]Bäurle, N. & Rieder, U. (2009) MDP algorithms for portfolio optimization problems in pure jump markets. Finance Stoch. 13, 591–611.

[10]Bect, J. (2010) A unifying formulation of the Fokker–Planck–Kolmogorov equation for general stochastic hybrid systems. Nonlinear Anal.: Hybrid Syst. 4, 357–370.

[11]Bertsekas, D. P. (2005) Dynamic Programming and Optimal Control, Athena Scientific, Belmont, MA.

[12]Borzì, A. & Schulz, V. (2012) Computational optimization of systems governed by partial differential equations. SIAM Book Series on Computational Science and Engineering 08, SIAM, Philadelphia, PA.

[13]Cassandras, C. G. & Lygeros, J. (2007) Stochastic Hybrid Systems, CRC Press Taylor & Francis Group, Boca Raton, FL.

[14]Chiquet, J., Limnios, N. & Eid, M. (2009) Piecewise deterministic Markov processes applied to fatigue crack growth modelling. J. Stat. Plan. Inference (Special Issue), 139, 1657–1667.

[15]Choo, K. G., Teo, K. L. & Wu, Z. S. (1981/1982) On an optimal control problem involving first order hyperbolic systems with boundary controls. Numer. Funct. Anal. Optim., 4, 171–190.

[16]Cocozza-Thivent, C., Eymard, R. & Mercier, S. (2006) A finite volume scheme for dynamic reliability models. IMA J. Numer. Anal. 26, 446–471.

[17]Cocozza-Thivent, C., Eymard, R., Mercier, S. & Roussignol, M. (2006) Characterization of the marginal distributions of Markov processes used in dynamic reliability. *J. Appl. Math. Stoch. Anal.* article no. 92156, 1–18.

[18]Costa, O. L. V. & Dufour, F. (2003) On the Poisson equation for piecewise-deterministic Markov processes. SIAM J. Control Optim. 42, 985–1001.

[19]Costa, O. L. V. & Dufour, F. (2010) Average continuous control of piecewise deterministic Markov processes. SIAM J. Control Optim. 48, 4262–4291.

[20]Cox, D. R. & Miller, H. D. (2001) The Theory of Stochastic Processes, Chapman & Hall CRC, Boca Raton, FL.

[21]Davis, M. H. A. (1984) Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. J. R. Stat. Soc. B, 46, 353–388.

[22]Dempster, M. A. H. & Ye, J. J. (1995) Impulse control of piecewise deterministic Markov processes. Ann. Appl. Probab. 5, 399–423.

[23]Ebeling, W., Gudowska-Nowak, E. & Sokolov, I. M. (2008) On stochastic dynamics in physics—Remarks on history and terminology. Acta Phys. Pol., 39, 1003–1018.

[24]Evans, L. C. (2002) Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI.

[25]Eymard, R., Mercier, S. & Prignet, A. (2008) An implicit finite volume scheme for a scalar hyperbolic problem with measure data related to piecewise deterministic Markov processes. J. Comput. Appl. Math. 222, 293–323.

[26]Faggionato, A., Gabrielli, D. & Ribezzi Crivellari, M. (2009) Non-equilibrium thermodynamics of piecewise deterministic Markov processes J. Stat. Phys. 137, 259–304.

[27]Filliger, R. & Hongler, M. O. (2004) Supersymmetry in random two-velocity processes. Physica. A 332, 141–150.

[28]Gilbert, J. C. & Nocedal, J. (1992) Global convergence properties of conjugate gradient methods for optimization. SIAM J. Opt. 2, 21–42.

[29]Grüne, L. & Pannek, J. (2011) Nonlinear Model Predictive Control, Theory and Algorithms, Communications and Control Engineering, Springer Verlag, London/Dordrecht/Heidelberg/New York.

[30]Gustafsson, M. & Holmgren, S. (2010) An implementation framework for solving high-dimensional PDEs on massively parallel computers. In: Kreiss, G.et al. (editors), Numerical Mathematics and Advanced Applications 2009, Springer-Verlag, Berlin–Heidelberg, pp. 417–424.

[31]Hillen, T. & Othmer, H. G. (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751–775.

[32]Horsthemke, H. (1999) Spatial instabilities in reaction random walks with direction-independent kinetics. Phys. Rev E 60, 2651–2663.

[33]Ito, K. & Kunisch, K. (1990) Receding horizon optimal control for infinite dimensional systems. ESAIM: Control Optim. Calculus Var. 35, 814–824.

[34]Kittel, C. (2004) Elementary Statistical Physics, Dover Publications, New York/London.

[35]Lax, P. D. (2006) Hyperbolic Partial Differential Equations—Courant Lecture Notes in Mathematics, Courant Institute of Mathematical Sciences, American Mathematical Society, Providence, RI.

[36]Lions, J. L., (1971) Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin.

[37]Magni, L., Raimondo, D. M. & Allgöwer, F. (2009) Nonlinear Model Predictive Control, Springer, Berlin.

[38]Maurer, H. & Zowe, J. (1979) First- and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program. 16, 98–110.

[39]Mayne, D. Q. & Michalska, H. (1990) Receding horizon control for nonlinear systems. IEEE Trans. Aut. Control 35, 814–824.

[40]Mil'shtein, G. N. & Repin, Y. M. (1972) Action of a Markov process on a system of differential equations. Differ. Equ. (translated from Russian), 5, 1010–1019.

[41]Moresino, F., Pourtallier, O. & Tidball, M. (1999) *Using Viscosity Solution for Approximation in Piecewise Deterministic Control Systems*, Unité de recherche INRIA Sophia Antipolis: Rapport de recherche n. 3687.

[42]Morita, A. (1990) Free Brownian motion of a particle driven by a dichotomous random force. Phys. Rev A 41, 754–760.

[43]Morton, K. W. & Mayers, D. F. (2005) Numerical Solution of Partial Differential Equations: An Introduction, Cambridge University Press, Cambridge, UK.

[44]Ou, Y. & Schuster, E. (2010) On the stability of receding horizon control of bilinear parabolic PDE systems. In: *Proceedings of the 2010 IEEE Conference on Decision and Control*, 15–17 December, 2010, Atlanta, Georgia.

[45]Pawula, R. F. (1977) The probability density and level-crossings of first-order non-linear systems driven by the random telegraph signal. Int. J. Control 25, 283–292.

[46]Pawula, R. F. & Rice, O. (1986) On filtered binary processes. IEEE Trans. Inf. Th. IT-32, 63–72.

[47]Primak, S., Kontorovich, V. & Lyandres, V. (2004) Stochastic Methods and Their Applications to Communications, John Wiley & Sons, Chichester.

[48]Risken, R. (1996) The Fokker–Planck Equation: Methods of Solution and Applications, Springer, Berlin.

[49]Shanno, D. F. (1978) Conjugate gradient methods with inexact searches. Math. Oper. Res. 3, 244–256.

[50]Zubair, H.Bin, , Oosterlee, C. C. & Wienands, R. (2007) Multigrid for high-dimensional elliptic partial differential equations on non-equidistant grid. SIAM J. Sci. Comput. 29, 1613–1636.