Skip to main content

A point process model for generating biofilms with realistic microstructure and rheology


Biofilms are communities of bacteria that exhibit a multitude of multiscale biomechanical behaviours. Recent experimental advances have led to characterisations of these behaviours in terms of measurements of the viscoelastic moduli of biofilms grown in bioreactors and the fracture and fragmentation properties of biofilms. These properties are macroscale features of biofilms; however, a previous work by our group has shown that heterogeneous microscale features are critical in predicting biofilm rheology. In this paper, we use tools from statistical physics to develop a generative statistical model of the positions of bacteria in biofilms. Specifically, the model is a type of pairwise interaction model (PIM). We show through simulation that the macroscopic mechanical properties of biofilms depend on the choice of microscale spatial model. A key finding is that uniform and non-uniform sets of points lead to differing mechanical properties. This distinction appears not to have been previously considered in mathematical biofilm literature. We also found that realisations of a biologically informed PIM have realistic in silico mechanical properties, and have statistical properties that closely match experimental data. We also note that a Poisson spatial point process of suitable number density also yields realistic mechanical properties, but that the spatial distribution of points does not reflect those occurring in our experimentally observed biofilm.

Hide All

†This work was supported in part by the National Science Foundation grants PHY-0940991 and DMS-1225878 to DMB, and by the Department of Energy through the Computational Science Graduate Fellowship program, DE-FG02-97ER25308, to JAS.

Hide All
[1] Abramson, I. S. (1982) On bandwidth variation in kernel estimates-a square root law. Ann. Stat. 10 (4), 12171223.
[2] Alpkvist, E. & Klapper, I. (2008) Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Sci. Technol. 55 (8–9), 265273.
[3] Baddeley, A. & Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns. Aust. N. Z. J. Stat. 42 (3), 283322.
[4] Baddeley, A. J., Møller, J. & Waagepetersen, R. (2000) Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat. Neerlandica 54 (3), 329350.
[5] Billingsley, P. (2008) Probability and Measure, John Wiley & Sons, New York.
[6] Christensen, R. M. (1982) Theory of Viscoelasticity: An Introduction, 2nd ed, New York: Academic Press.
[7] Coeurjolly, J. F., Møller, J. & Waagepetersen, R. (2017) A tutorial on Palm distribution for spatial point processes. Int. Stat. Rev. 85 (3), 404420.
[8] Conrad, P. R., Marzouk, Y. M., Pillai, N. S. & Smith, A. (2016) Accelerating asymptotically exact MCMC for computationally intensive models via local approximations. J. Am. Stat. Assoc. 111 (516), 15911607.
[9] Courant, R. & Hilbert, D. (1954) Methods of mathematical physics, Vol. I. Phys. Today 7 (5), 1717.
[10] Crocker, J. C. & Grier, D. G. (1996) Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179 (1), 298310.
[11] Cronie, O. & van Lieshout, M. N. M. (2018) A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions. Biometrika.
[12] Daley, D. J. & Vere-Jones, D. (2007) An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure, Springer Science & Business Media, New York.
[13] Dzul, S. P., Thornton, M. M., Hohne, D. N., Stewart, E. J., Shah, A. A., Bortz, D. M., Solomon, M. J. & Younger, J. G. (2011) Contribution of the Klebsiella pneumoniae capsule to bacterial aggregate and biofilm microstructures. Appl. Environ. Microbiol. 77 (5), 17771782.
[14] Epanechnikov, V. A. (1969) Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14 (1), 153158.
[15] Fai, T. G., Leo-Macias, A., Stokes, D. L. & Peskin, C. S. (2017) Image-based model of the spectrin cytoskeleton for red blood cell simulation. PLoS Comput. Biol. 13 (10), e1005790.
[16] Flemming, H. C. (2011) Microbial biofouling: Unsolved problems, insufficient approaches, and possible solutions. In: Flemming, H.-C., Wingender, J., Szewzyk, U. (editors), Biofilm Highlights, Springer, pp. 81109.
[17] Gaboriaud, F., Gee, M. L., Strugnell, R. & Duval, J. F. L. (2008) Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media. Langmuir 24 (19), 1098810995.
[18] Gangopadhyay, A. & Cheung, K. (2002) Bayesian approach to the choice of smoothing parameter in kernel density estimation. J. Nonparametric Stat. 14 (6), 655664.
[19] Geyer, C. J. & Møller, J. (1994) Simulation procedures and likelihood inference for spatial point processes. Scand. J. Stat. 21 (4), 359373.
[20] Guan, Y. (2007) A least-squares cross-validation bandwidth selection approach in pair correlation function estimations. Stat. Probab. Lett. 77 (18), 17221729.
[21] Guan, Y. (2008) On consistent nonparametric intensity estimation for inhomogeneous spatial point processes. J. Am. Stat. Assoc. 103 (483), 12381247.
[22] Guélon, T., Mathias, J. D. & Stoodley, P. (2011) Advances in biofilm mechanics. In: Flemming, H.-C., Wingender, J., Szewzyk, U. (editors), Biofilm Highlights, Springer, pp. 111139.
[23] Guizar-Sicairos, M. & Gutiérrez-Vega, J. C. (2004) Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields. J. Opt. Soc. Am. A 21 (1), 5358.
[24] Hall, P. & Marron, J. S. (1991) Local minima in cross-validation functions. J. R. Stat. Soc. Ser. B (Methodological) 53 (1), 245252.
[25] Hammond, J. F., Stewart, E. J., Younger, J. G., Solomon, M. J. & Bortz, D. M. (2014) Variable viscosity and density biofilm simulations using an immersed boundary method, Part I: Numerical scheme and convergence results. Comput. Model. Eng. Sci. 98 (3), 295340.
[26] Hansen, J. P. & McDonald, I. R. (1990) Theory of Simple Liquids, Elsevier, London, UK.
[27] Hardle, W., Marron, J. S. & Wand, M. P. (1990) Bandwidth choice for density derivatives. J. R. Stat. Ser. B (Methodological) 52 (1), 223232.
[28] Jones, M. C. (1993) Simple boundary correction for kernel density estimation. Stat. Comput. 3 (3), 135146.
[29] Kerscher, M., Szapudi, I. & Szalay, A. S. (2000) A comparison of estimators for the two-point correlation function. Astrophys. J. Lett. 535 (1), L13.
[30] Landy, S. D. & Szalay, A. S. (1993) Bias and variance of angular correlation functions. Astrophys. J. 412, 6471.
[31] Laspidou, C. S. & Rittmann, B. E. (2004) Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Res. 38 (14), 33493361.
[32] Lovett, R., Mou, C. Y. & Buff, F. P. (1976) The structure of the liquid-vapor interface. J. Chem. Phys. 65, 2377.
[33] Moller, J. & Waagepetersen, R. P. (2003) Statistical Inference and Simulation for Spatial Point Processes, CRC Press, Boca Raton, FL.
[34] Ornstein, L. S. & Zernike, F. (1914) The influence of accidental deviations of density on the equation of state. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings 19 (2), 13121315.
[35] Parzen, E. (1962) On estimation of a probability density function and mode. Ann. Math. Stat. 33 (3), 10651076.
[36] Pavlovsky, L., Younger, J. G. & Solomon, M. J. (2013) In situ rheology of Staphylococcus epidermidis bacterial biofilms. Soft Matter 9 (1), 122131.
[37] Ripley, B. D. (1991) Statistical Inference for Spatial Processes, Cambridge University Press.
[38] Rosenblatt, M. et al. (1956) Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27 (3), 832837.
[39] Silverman, B. W. (1981) Using Kernel density estimates to investigate multimodality. J. R. Stat. Soc. 43 (1), 9799.
[40] Sobczyk, K. & Kirkner, D. J. (2012) Stochastic Modeling of Microstructures, Springer Science & Business Media, Boston, MA.
[41] Stewart, E. J., Ganesan, M., Younger, J. G. & Solomon, M. J. (2015) Artificial biofilms establish the role of matrix interactions in Staphylococcal biofilm assembly and disassembly. Sci. Rep. 5, 13081; doi: 10.1038/srep13081.
[42] Stewart, E. J., Satorius, A. E., Younger, J. G. & Solomon, M. J. (2013) Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure. Langmuir 29 (23), 70177024.
[43] Stotsky, J. A., Hammond, J. F., Pavlovsky, L., Stewart, E. J., Younger, J. G., Solomon, M. J. & Bortz, D. M. (2016) Variable viscosity and density biofilm simulations using an immersed boundary method, Part II: Experimental validation and the heterogeneous rheology-IBM. J. Comput. Phys. 317, 204222.
[44] Stoyan, D., Bertram, U. & Wendrock, H. (1993) Estimation variances for estimators of product densities and pair correlation functions of planar point processes. Ann. Inst. Stat. Math. 45 (2), 211221.
[45] Stoyan, D., Kendall, W. S. & Mecke, J. (1995) Stochastic Geometry and its Applications, Akademie-Verlag, Berlin.
[46] Sudarsan, R., Ghosh, S., Stockie, J. M. & Eberl, H. J. (2016) Simulating biofilm deformation and detachment with the immersed boundary method. Commun. Comput. Phys. 19 (3), 682732.
[47] Szapudi, I. & Szalay, A. S. (1998) A new class of estimators for the n-point correlations. Astrophys. J. Lett. 494 (1), L41.
[48] Torquato, S. (2013) Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Vol. 16, Springer Science & Business Media, New York.
[49] Truskett, T. M., Torquato, S. & Debenedetti, P. G. (1998) Density fluctuations in many-body systems. Phys. Rev. E 58 (6), 7369.
[50] Vo, G. D., Brindle, E. & Heys, J. (2010) An experimentally validated immersed boundary model of fluid–biofilm interaction. Water Sci. Technol. 61 (12), 30333040.
[51] Wand, M. P. & Jones, M. C. (1993) Comparison of smoothing parameterizations in bivariate kernel density estimation. J. Am. Stat. Assoc. 88 (422), 520528.
[52] Wróbel, J. K., Cortez, R. & Fauci, L. (2014) Modeling viscoelastic networks in stokes flow. Phys. Fluids (1994-present) 26 (11), 113102.
[53] Yeong, C. L. Y. & Torquato, S. (1998) Reconstructing random media. Phys. Rev. E 57 (1), 495.
[54] Zhang, T., Cogan, N. G. & Wang, Q. (2008) Phase field models for biofilms. I. Theory and one-dimensional simulations. SIAM J. Appl. Math. 69 (3), 641669.
[55] Zhang, T., Cogan, N. G. & Wang, Q. (2008) Phase field models for biofilms. ii. 2-d numerical simulations of biofilm-flow interaction. Commun. Comput. Phys 4 (1), 72101.
[56] Zhao, J., Shen, Y., Haapasalo, M., Wang, Z. & Wang, Q. (2016) A 3d numerical study of antimicrobial persistence in heterogeneous multi-species biofilms. J. Theor. Biol. 392, 8398.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed