Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-md8df Total loading time: 0.191 Render date: 2021-11-28T01:56:08.843Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A point process model for generating biofilms with realistic microstructure and rheology

Published online by Cambridge University Press:  16 May 2018

JAY ALEXANDER STOTSKY
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA emails: Jay.Stotsky@colorado.edu, Vanja.Dukic@colorado.edu, dmbortz@colorado.edu
VANJA DUKIC
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA emails: Jay.Stotsky@colorado.edu, Vanja.Dukic@colorado.edu, dmbortz@colorado.edu
DAVID M. BORTZ
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA emails: Jay.Stotsky@colorado.edu, Vanja.Dukic@colorado.edu, dmbortz@colorado.edu
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Biofilms are communities of bacteria that exhibit a multitude of multiscale biomechanical behaviours. Recent experimental advances have led to characterisations of these behaviours in terms of measurements of the viscoelastic moduli of biofilms grown in bioreactors and the fracture and fragmentation properties of biofilms. These properties are macroscale features of biofilms; however, a previous work by our group has shown that heterogeneous microscale features are critical in predicting biofilm rheology. In this paper, we use tools from statistical physics to develop a generative statistical model of the positions of bacteria in biofilms. Specifically, the model is a type of pairwise interaction model (PIM). We show through simulation that the macroscopic mechanical properties of biofilms depend on the choice of microscale spatial model. A key finding is that uniform and non-uniform sets of points lead to differing mechanical properties. This distinction appears not to have been previously considered in mathematical biofilm literature. We also found that realisations of a biologically informed PIM have realistic in silico mechanical properties, and have statistical properties that closely match experimental data. We also note that a Poisson spatial point process of suitable number density also yields realistic mechanical properties, but that the spatial distribution of points does not reflect those occurring in our experimentally observed biofilm.

Type
Papers
Copyright
Copyright © Cambridge University Press 2018 

Footnotes

†This work was supported in part by the National Science Foundation grants PHY-0940991 and DMS-1225878 to DMB, and by the Department of Energy through the Computational Science Graduate Fellowship program, DE-FG02-97ER25308, to JAS.

References

[1] Abramson, I. S. (1982) On bandwidth variation in kernel estimates-a square root law. Ann. Stat. 10 (4), 12171223.CrossRefGoogle Scholar
[2] Alpkvist, E. & Klapper, I. (2008) Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Sci. Technol. 55 (8–9), 265273.CrossRefGoogle Scholar
[3] Baddeley, A. & Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns. Aust. N. Z. J. Stat. 42 (3), 283322.CrossRefGoogle Scholar
[4] Baddeley, A. J., Møller, J. & Waagepetersen, R. (2000) Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat. Neerlandica 54 (3), 329350.CrossRefGoogle Scholar
[5] Billingsley, P. (2008) Probability and Measure, John Wiley & Sons, New York.Google Scholar
[6] Christensen, R. M. (1982) Theory of Viscoelasticity: An Introduction, 2nd ed, New York: Academic Press.Google Scholar
[7] Coeurjolly, J. F., Møller, J. & Waagepetersen, R. (2017) A tutorial on Palm distribution for spatial point processes. Int. Stat. Rev. 85 (3), 404420.CrossRefGoogle Scholar
[8] Conrad, P. R., Marzouk, Y. M., Pillai, N. S. & Smith, A. (2016) Accelerating asymptotically exact MCMC for computationally intensive models via local approximations. J. Am. Stat. Assoc. 111 (516), 15911607.CrossRefGoogle Scholar
[9] Courant, R. & Hilbert, D. (1954) Methods of mathematical physics, Vol. I. Phys. Today 7 (5), 1717.CrossRefGoogle Scholar
[10] Crocker, J. C. & Grier, D. G. (1996) Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179 (1), 298310.CrossRefGoogle Scholar
[11] Cronie, O. & van Lieshout, M. N. M. (2018) A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions. Biometrika.Google Scholar
[12] Daley, D. J. & Vere-Jones, D. (2007) An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure, Springer Science & Business Media, New York.Google Scholar
[13] Dzul, S. P., Thornton, M. M., Hohne, D. N., Stewart, E. J., Shah, A. A., Bortz, D. M., Solomon, M. J. & Younger, J. G. (2011) Contribution of the Klebsiella pneumoniae capsule to bacterial aggregate and biofilm microstructures. Appl. Environ. Microbiol. 77 (5), 17771782.CrossRefGoogle ScholarPubMed
[14] Epanechnikov, V. A. (1969) Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14 (1), 153158.CrossRefGoogle Scholar
[15] Fai, T. G., Leo-Macias, A., Stokes, D. L. & Peskin, C. S. (2017) Image-based model of the spectrin cytoskeleton for red blood cell simulation. PLoS Comput. Biol. 13 (10), e1005790.CrossRefGoogle ScholarPubMed
[16] Flemming, H. C. (2011) Microbial biofouling: Unsolved problems, insufficient approaches, and possible solutions. In: Flemming, H.-C., Wingender, J., Szewzyk, U. (editors), Biofilm Highlights, Springer, pp. 81109.CrossRefGoogle Scholar
[17] Gaboriaud, F., Gee, M. L., Strugnell, R. & Duval, J. F. L. (2008) Coupled electrostatic, hydrodynamic, and mechanical properties of bacterial interfaces in aqueous media. Langmuir 24 (19), 1098810995.CrossRefGoogle ScholarPubMed
[18] Gangopadhyay, A. & Cheung, K. (2002) Bayesian approach to the choice of smoothing parameter in kernel density estimation. J. Nonparametric Stat. 14 (6), 655664.CrossRefGoogle Scholar
[19] Geyer, C. J. & Møller, J. (1994) Simulation procedures and likelihood inference for spatial point processes. Scand. J. Stat. 21 (4), 359373.Google Scholar
[20] Guan, Y. (2007) A least-squares cross-validation bandwidth selection approach in pair correlation function estimations. Stat. Probab. Lett. 77 (18), 17221729.CrossRefGoogle Scholar
[21] Guan, Y. (2008) On consistent nonparametric intensity estimation for inhomogeneous spatial point processes. J. Am. Stat. Assoc. 103 (483), 12381247.CrossRefGoogle Scholar
[22] Guélon, T., Mathias, J. D. & Stoodley, P. (2011) Advances in biofilm mechanics. In: Flemming, H.-C., Wingender, J., Szewzyk, U. (editors), Biofilm Highlights, Springer, pp. 111139.CrossRefGoogle Scholar
[23] Guizar-Sicairos, M. & Gutiérrez-Vega, J. C. (2004) Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields. J. Opt. Soc. Am. A 21 (1), 5358.CrossRefGoogle ScholarPubMed
[24] Hall, P. & Marron, J. S. (1991) Local minima in cross-validation functions. J. R. Stat. Soc. Ser. B (Methodological) 53 (1), 245252.Google Scholar
[25] Hammond, J. F., Stewart, E. J., Younger, J. G., Solomon, M. J. & Bortz, D. M. (2014) Variable viscosity and density biofilm simulations using an immersed boundary method, Part I: Numerical scheme and convergence results. Comput. Model. Eng. Sci. 98 (3), 295340.Google Scholar
[26] Hansen, J. P. & McDonald, I. R. (1990) Theory of Simple Liquids, Elsevier, London, UK.Google Scholar
[27] Hardle, W., Marron, J. S. & Wand, M. P. (1990) Bandwidth choice for density derivatives. J. R. Stat. Ser. B (Methodological) 52 (1), 223232.Google Scholar
[28] Jones, M. C. (1993) Simple boundary correction for kernel density estimation. Stat. Comput. 3 (3), 135146.CrossRefGoogle Scholar
[29] Kerscher, M., Szapudi, I. & Szalay, A. S. (2000) A comparison of estimators for the two-point correlation function. Astrophys. J. Lett. 535 (1), L13.CrossRefGoogle ScholarPubMed
[30] Landy, S. D. & Szalay, A. S. (1993) Bias and variance of angular correlation functions. Astrophys. J. 412, 6471.CrossRefGoogle Scholar
[31] Laspidou, C. S. & Rittmann, B. E. (2004) Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Res. 38 (14), 33493361.CrossRefGoogle ScholarPubMed
[32] Lovett, R., Mou, C. Y. & Buff, F. P. (1976) The structure of the liquid-vapor interface. J. Chem. Phys. 65, 2377.CrossRefGoogle Scholar
[33] Moller, J. & Waagepetersen, R. P. (2003) Statistical Inference and Simulation for Spatial Point Processes, CRC Press, Boca Raton, FL.CrossRefGoogle Scholar
[34] Ornstein, L. S. & Zernike, F. (1914) The influence of accidental deviations of density on the equation of state. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings 19 (2), 13121315.Google Scholar
[35] Parzen, E. (1962) On estimation of a probability density function and mode. Ann. Math. Stat. 33 (3), 10651076.CrossRefGoogle Scholar
[36] Pavlovsky, L., Younger, J. G. & Solomon, M. J. (2013) In situ rheology of Staphylococcus epidermidis bacterial biofilms. Soft Matter 9 (1), 122131.CrossRefGoogle ScholarPubMed
[37] Ripley, B. D. (1991) Statistical Inference for Spatial Processes, Cambridge University Press.Google Scholar
[38] Rosenblatt, M. et al. (1956) Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27 (3), 832837.CrossRefGoogle Scholar
[39] Silverman, B. W. (1981) Using Kernel density estimates to investigate multimodality. J. R. Stat. Soc. 43 (1), 9799.Google Scholar
[40] Sobczyk, K. & Kirkner, D. J. (2012) Stochastic Modeling of Microstructures, Springer Science & Business Media, Boston, MA.Google Scholar
[41] Stewart, E. J., Ganesan, M., Younger, J. G. & Solomon, M. J. (2015) Artificial biofilms establish the role of matrix interactions in Staphylococcal biofilm assembly and disassembly. Sci. Rep. 5, 13081; doi: 10.1038/srep13081.CrossRefGoogle ScholarPubMed
[42] Stewart, E. J., Satorius, A. E., Younger, J. G. & Solomon, M. J. (2013) Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure. Langmuir 29 (23), 70177024.CrossRefGoogle ScholarPubMed
[43] Stotsky, J. A., Hammond, J. F., Pavlovsky, L., Stewart, E. J., Younger, J. G., Solomon, M. J. & Bortz, D. M. (2016) Variable viscosity and density biofilm simulations using an immersed boundary method, Part II: Experimental validation and the heterogeneous rheology-IBM. J. Comput. Phys. 317, 204222.CrossRefGoogle Scholar
[44] Stoyan, D., Bertram, U. & Wendrock, H. (1993) Estimation variances for estimators of product densities and pair correlation functions of planar point processes. Ann. Inst. Stat. Math. 45 (2), 211221.CrossRefGoogle Scholar
[45] Stoyan, D., Kendall, W. S. & Mecke, J. (1995) Stochastic Geometry and its Applications, Akademie-Verlag, Berlin.Google Scholar
[46] Sudarsan, R., Ghosh, S., Stockie, J. M. & Eberl, H. J. (2016) Simulating biofilm deformation and detachment with the immersed boundary method. Commun. Comput. Phys. 19 (3), 682732.CrossRefGoogle Scholar
[47] Szapudi, I. & Szalay, A. S. (1998) A new class of estimators for the n-point correlations. Astrophys. J. Lett. 494 (1), L41.CrossRefGoogle Scholar
[48] Torquato, S. (2013) Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Vol. 16, Springer Science & Business Media, New York.Google Scholar
[49] Truskett, T. M., Torquato, S. & Debenedetti, P. G. (1998) Density fluctuations in many-body systems. Phys. Rev. E 58 (6), 7369.CrossRefGoogle Scholar
[50] Vo, G. D., Brindle, E. & Heys, J. (2010) An experimentally validated immersed boundary model of fluid–biofilm interaction. Water Sci. Technol. 61 (12), 30333040.Google ScholarPubMed
[51] Wand, M. P. & Jones, M. C. (1993) Comparison of smoothing parameterizations in bivariate kernel density estimation. J. Am. Stat. Assoc. 88 (422), 520528.CrossRefGoogle Scholar
[52] Wróbel, J. K., Cortez, R. & Fauci, L. (2014) Modeling viscoelastic networks in stokes flow. Phys. Fluids (1994-present) 26 (11), 113102.CrossRefGoogle Scholar
[53] Yeong, C. L. Y. & Torquato, S. (1998) Reconstructing random media. Phys. Rev. E 57 (1), 495.CrossRefGoogle Scholar
[54] Zhang, T., Cogan, N. G. & Wang, Q. (2008) Phase field models for biofilms. I. Theory and one-dimensional simulations. SIAM J. Appl. Math. 69 (3), 641669.CrossRefGoogle Scholar
[55] Zhang, T., Cogan, N. G. & Wang, Q. (2008) Phase field models for biofilms. ii. 2-d numerical simulations of biofilm-flow interaction. Commun. Comput. Phys 4 (1), 72101.Google Scholar
[56] Zhao, J., Shen, Y., Haapasalo, M., Wang, Z. & Wang, Q. (2016) A 3d numerical study of antimicrobial persistence in heterogeneous multi-species biofilms. J. Theor. Biol. 392, 8398.CrossRefGoogle ScholarPubMed
You have Access
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A point process model for generating biofilms with realistic microstructure and rheology
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A point process model for generating biofilms with realistic microstructure and rheology
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A point process model for generating biofilms with realistic microstructure and rheology
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *