Skip to main content Accessibility help
×
Home

Properties of the chemostat model with aggregated biomass

  • ALAIN RAPAPORT (a1)

Abstract

We revisit the well-known chemostat model, considering that bacteria can be attached together in aggregates or flocs. We distinguish explicitly free and attached compartments in the model and give sufficient conditions for coexistence of these two forms. We then study the case of fast attachment and detachment and show how it is related to density-dependent growth functions. Finally, we give some insights concerning the cases of multi-specific flocs and different removal rates.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Properties of the chemostat model with aggregated biomass
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Properties of the chemostat model with aggregated biomass
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Properties of the chemostat model with aggregated biomass
      Available formats
      ×

Copyright

References

Hide All
[1] Ballyk, M., Jones, D. & Smith, H. (2008) The Biofilm Model of Freter: A Review, Structured Population Models in Biology and Epidemiology, Lecture Notes in Mathematics, Magal, P. & Ruan, S. (editors), Springer-Verlag, New-York pp. 265302.
[2] Ballyk, M. & Smith, H. (1999) A model of microbial growth in a plug flow reactor with wall attachment. Math. Biosci. 158, 95126.
[3] Berlin, A. & Kislenko, V. (1995) Kinetic models of suspension flocculation by polymers. Colloids Surf. A: Physicochem. Eng. Asp. 104, 6772.
[4] Contois, D. (1959) Kinetics of bacterial growth: Relationship between population density and specific growth rate of continuous cultures. J. Gen. Microbiol. 21, 4050.
[5] Costeron, J. (1995) Overview of microbial biofilms. J. Indust. Microbiol. 15, l37140.
[6] De Leenheer, P., Angeli, D. & Sontag, E. (2006) Crowding effects promote coexistence in the chemostat. J. Math. Anal. Appl. 319 (1), 4860.
[7] Fekih-Salem, R. (2013) Modéles mathématiques pour la compétition et la coexistence des espéces microbiennes dans un chémostat. PhD thesis, University of Montpellier II and University of Tunis el Manar. https://tel.archives-ouvertes.fr/tel-01018600.
[8] Fekih-Salem, R., Harmand, J., Lobry, C., Rapaport, A. & Sari, T. (2013) Extensions of the chemostat model with flocculation. J. Math. Anal. Appl. 397, 292306.
[9] Fekih-Salem, R., Rapaport, A. & Sari, T. (2016) Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses. Appl. Math. Model. 40, 76567677.
[10] Freter, R., Brickner, H., Fekete, J., Vickerman, M. & Carey, K. (1983) Survival and implantation of escherichia coli in the intestinal tract. Infect. Immun. 39, 686703.
[11] Haegeman, B., Lobry, C. & Harmand, J. (2007) Modeling bacteria flocculation as density-dependent growth. AIChE J. 53 (2), 535539.
[12] Haegeman, B. & Rapaport, A. (2008) How flocculation can explain coexistence in the chemostat. J. Biol. Dyn. 2, 113.
[13] Harmand, J. & Godon, J. J. (2007) Density-dependent kinetics models for a simple description of complex phenomena in macroscopic mass-balance modeling of bioreactors. Ecol. Modelling 200 (3–4), 393402.
[14] Harmand, J., Lobry, C., Rapaport, A. & Sari, T. (2017) The Chemostat, Mathematical Theory of the Continuous Culture of Micro-Organisms, Wiley-ISTE, London.
[15] Heffernan, B., Murphy, C. & Casey, E. (2009) Comparison of planktonic and biofilm cultures of Pseudomonas fluorescens DSM 8341 cells grown on fluoroacetate. Appl. Environ. Microbiol. 75, 28992907.
[16] IWA Task Group on Biofilm Modeling (2006) Mathematical Modeling of Biofilms. IWA Publishing, London.
[17] Jones, D., Kojouharov, H., Le, D. & Smith, H. (2003) The Freter model: A simple model of biofilm formation. J. Math. Biol. 47, 137152.
[18] Khalil, H. (1996) Nonlinear Systems, Prentice Hall, Upper Saddle River (NJ).
[19] Lobry, C., Mazenc, F. & Rapaport, A. (2005) Persistence in ecological models of competition for a single resource. C. R. Math. 340 (3), 199204.
[20] Lobry, C., Sari, T. & Touhami, S. (1995) On Tikhonov's theorem for convergence of solutions of slow and fast systems. Electron. J. Differ. Equ. 19, 122.
[21] Mischaikow, M., Smith, H. & Thieme, H. (1995) Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions. Trans. Am. Math. Soc. 347 (5), 16691685.
[22] Pilyugin, S. & Waltman, P. (1999) The simple chemostat with wall growth. SIAM J. Appl. Math. 59, 15521572.
[23] Smith, H. & Waltman, P. (1995) The Theory of the Chemostat: Dynamics of Microbial Competition, Vol. 13, Cambridge University Press, New-York.
[24] Stemmons, E. & Smith, H. (2000) Competition in a chemostat with wall attachment. SIAM J. Appl. Math. 61, 567595.
[25] Tang, B., Sitomer, A. & Jackson, T. (1997) Population dynamics and competition in chemostat models with adaptive nutrient uptake. J. Math. Biol. 35, 453479.
[26] Thomas, D., Judd, S. & Fawcett, N. (1999) Flocculation modelling: A review. Water Res. 33, 15791592.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed