Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T21:46:05.603Z Has data issue: false hasContentIssue false

Reconstruction in the inverse crack problem by variational methods

Published online by Cambridge University Press:  01 December 2008

LUCA RONDI*
Affiliation:
Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, via Valerio 12/1, I-34127 Trieste, Italy email: rondi@units.it

Abstract

We deal with a variational approach to the inverse crack problem, that is the detection and reconstruction of cracks, and other defects, inside a conducting body by performing boundary measurements of current and voltage type. We formulate such an inverse problem in a free-discontinuity problems framework and propose a novel method for the numerical reconstruction of the cracks by the available boundary data. The proposed method is amenable to numerical computations and it is justified by a convergence analysis, as the error on the measurements goes to zero. We further notice that we use the Γ-convergence approximation of the Mumford–Shah functional due to Ambrosio and Tortorelli as the required regularization term.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alessandrini, G. & DiBenedetto, E. (1997) Determining 2-dimensional cracks in 3-dimensional bodies: Uniqueness and stability. Indiana Univ. Math. J. 46, 182.Google Scholar
[2]Ambrosio, L., Fusco, N. & Pallara, D. (2000) Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford.CrossRefGoogle Scholar
[3]Ambrosio, L. & Tortorelli, V.M. (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43, 9991036.CrossRefGoogle Scholar
[4]Ambrosio, L. & Tortorelli, V. M. (1992) On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6, 105123.Google Scholar
[5]Bellettini, G. & Coscia, A. (1994) Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15, 201224.CrossRefGoogle Scholar
[6]Bourdin, B. (1999) Image segmentation with a finite element method. M2AN Math. Model. Numer. Anal. 33, 229244.CrossRefGoogle Scholar
[7]Bourdin, B. (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Inter. Free Bound. 9, 411430.CrossRefGoogle Scholar
[8]Braides, A. (1998) Approximation of Free-Discontinuity Problems, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
[9]Bryan, K. & Vogelius, M. S. (2004) A review of selected works on crack identification. In: Croke, C. B., Lasiecka, I., Uhlmann, G. & Vogelius, M. S. (editors), Geometric Methods in Inverse Problems and PDE Control, Springer-Verlag, Berlin, Heidelberg, New York, pp. 2546.CrossRefGoogle Scholar
[10]Dal Maso, G. (1993) An Introduction to Γ-convergence, Birkhäuser, Boston, Basel, Berlin.CrossRefGoogle Scholar
[11]Deny, J. & Lions, J. L. (1953–54) Les espaces du type de Beppo Levi. Ann. Inst. Fourier (Grenoble) 5, 305370.CrossRefGoogle Scholar
[12]Eller, M. (1996) Identification of cracks in three-dimensional bodies by many boundary measurements. Inv. Prob. 12, 395408.CrossRefGoogle Scholar
[13]Engl, H. W., Hanke, M. & Neubauer, A. (1996) Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, Boston, London.CrossRefGoogle Scholar
[14]Evans, L. C. & Gariepy, R. F. (1992) Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, Ann Arbor, London.Google Scholar
[15]March, R. (1992) Visual reconstruction with discontinuities using variational methods. Image Vis. Comput. 10, 3038.CrossRefGoogle Scholar
[16]Maz'ja, V. G. (1985) Sobolev Spaces, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
[17]Mumford, D. & Shah, J. (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577685.CrossRefGoogle Scholar
[18]Rondi, L. (2006) Unique continuation from Cauchy data in unknown non-smooth domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5, 189218.Google Scholar
[19]Rondi, L. (2007) A variational approach to the reconstruction of cracks by boundary measurements. J. Math. Pure Appl. 87, 324342.CrossRefGoogle Scholar