Skip to main content
×
Home

Sampling time-frequency localized functions and constructing localized time-frequency frames

  • G. A. M. VELASCO (a1) and M. DÖRFLER (a2)
Abstract

We study functions whose time-frequency content are concentrated in a compact region in phase space using time-frequency localization operators as a main tool. We obtain approximation inequalities for such functions using a finite linear combination of eigenfunctions of these operators, as well as a local Gabor system covering the region of interest. These would allow the construction of modified time-frequency dictionaries concentrated in the region.

Copyright
References
Hide All
[1] Abreu L. D. & Dörfler M. (2012) An inverse problem for localization operators. Inverse Problems 28 (11), 115001, 16.
[2] Aldroubi A., Cabrelli C. A. & Molter U. (2004) Wavelets on irregular grids with arbitrary dilation matrices, and frame atoms for L 2(ℝ d ). Appl. Comput. Harmon. Anal. (Special Issue: Frames in Harmonic Analysis, Part II) 17 (2), 119140.
[3] Christensen O. & Laugesen R. S. (2010) Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames. Sampl. Theory Signal Image Process. 9 (1–3), 7789.
[4] Cordero E. & Gröchenig K. (2003) Time-frequency analysis of localization operators. J. Funct. Anal. 205 (1), 107131.
[5] Daubechies I. (1988) Time-frequency localization operators: A geometric phase space approach. IEEE Trans. Inform. Theory 34 (4), 605612.
[6] Daubechies I. (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36 (5), 9611005.
[7] DeMari F., Feichtinger H. G. & Nowak K. (2002) Uniform eigenvalue estimates for time-frequency localization operators. J. London Math. Soc. 65 (3), 720732.
[8] Dörfler M. (2011) Quilted Gabor frames - A new concept for adaptive time-frequency representation. Adv. Appl. Math. 47 (4), 668687.
[9] Dörfler M. & Matusiak E. (2014) Nonstationary gabor frames - existence and construction. Int. J. Wavelets Multiresolut. Inf. Process. 12 (3).
[10] Dörfler M. & Romero J. L. (2013) Frames of eigenfunctions and localization of signal components. In: Proceedings of the 10th International Conference on Sampling Theory and Applications (SampTA2013), Bremen.
[11] Dörfler M. & Romero J. L. (2014) Frames adapted to a phase-space cover. Constr. Approx. 39 (3), 445484.
[12] Dörfler M. & Velasco G. (2014) Adaptive Gabor frames by projection onto time-frequency subspaces. In: Proceedings of the 39th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), pp. 3097–3101.
[13] Feichtinger H. G. (2006) Modulation spaces: Looking back and ahead. Sampl. Theory Signal Image Process. 5 (2), 109140.
[14] Feichtinger H. G. & Kaiblinger N. (2004) Varying the time-frequency lattice of Gabor frames. Trans. Amer. Math. Soc. 356 (5), 20012023.
[15] Feichtinger H. G. & Nowak K. (2001) A Szegö-type theorem for Gabor-Toeplitz localization operators. Michigan Math. J. 49 (1), 1321.
[16] Feichtinger H. G. & Werther T. (2001) Atomic systems for subspaces. In: Proceedings SampTA, Vol. 2001, Orlando, pp. 163–165.
[17] Feichtinger H. G. & Zimmermann G. (1998) A Banach space of test functions for Gabor analysis. In: Feichtinger H. G. & Strohmer T. (editors), Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA, pp. 123170.
[18] Gröchenig K. (2001) Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA.
[19] Gradshteyn I. S. & Ryzhik I. M. (2007) Table of Integrals, Series, and Products, 7th ed., Elsevier/Academic Press.
[20] Gröchenig K. & Toft J. (2013) The range of localization operators and lifting theorems for modulation and Bargmann-Fock spaces. Trans. Amer. Math. Soc. 365, 44754496.
[21] Hogan J. & Lakey J. (2015) Frame properties of shifts of prolate spheroidal wave functions. Appl. Comput. Harmon. Anal. 39 (1), 2132.
[22] Hogan J. A., Izu S. & Lakey J. D. (2010) Sampling approximations for time- and bandlimiting. Sampl. Theory Signal Image Process. 9 (1-3), 91117.
[23] Landau H. J. & Pollak H. O. (1961) Prolate spheroidal wave functions, Fourier analysis and uncertainty II. Bell Syst. Tech. J. 40, 6584.
[24] Landau H. J. & Pollak H. O. (1962) Prolate spheroidal wave functions, Fourier analysis and uncertainty, III: The dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 12951336.
[25] Li S. & Ogawa H. (2004) Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10 (4), 409431.
[26] Liuni M., Robel A., Matusiak E., Romito M. & Rodet X. (2013) Automatic adaptation of the time-frequency resolution for sound analysis and re-synthesis. IEEE Trans. Audio, Speech, Lang. Process. 21 (5), 959970.
[27] Matusiak E. & Eldar Y. C. (2012) Sub-Nyquist sampling of short pulses. IEEE Trans. Signal Process. 60 (3), 11341148.
[28] Ramanathan J. & Topiwala P. (1994) Time-frequency localization and the spectrogram. Appl. Comput. Harmon. Anal. 1 (2), 209215.
[29] Romero J. L. (2011) Surgery of spline-type and molecular frames. J. Fourier Anal. Appl. 17, 135174.
[30] Slepian D. & Pollak H. O. (1961) Prolate spheroidal wave functions, fourier analysis and uncertainty –I. Bell Syst. Tech. J. 40 (1), 4363.
[31] Strohmer T. (1998) Numerical algorithms for discrete Gabor expansions. In: Feichtinger H. G. and Strohmer T. (editors), Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser Boston, Boston, 267294.
[32] Walter G. G. & Shen X. A. (2003) Sampling with prolate spheroidal wave functions. Sampl. Theory Signal Image Process. 2 (1), 2552.
[33] Wilczok E. (2000) New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math. J. DMV 5, 201226.
[34] Wong M.-W. (2002) Wavelet Transforms and Localization Operators. Operator Theory: Advances and Applications, Vol. 136, Birkhäuser, Basel.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 246 *
Loading metrics...

* Views captured on Cambridge Core between 19th December 2016 - 23rd November 2017. This data will be updated every 24 hours.