Skip to main content
×
×
Home

Sharp-interface formation during lithium intercalation into silicon

  • E. MECA (a1), A. MÜNCH (a2) and B. WAGNER (a1) (a3)
Abstract

In this study, we present a phase-field model that describes the process of intercalation of Li ions into a layer of an amorphous solid such as amorphous silicon (a-Si). The governing equations couple a viscous Cahn–Hilliard-Reaction model with elasticity in the framework of the Cahn–Larché system. We discuss the parameter settings and flux conditions at the free boundary that lead to the formation of phase boundaries having a sharp gradient in lithium ion concentration between the initial state of the solid layer and the intercalated region. We carry out a matched asymptotic analysis to derive the corresponding sharp-interface model that also takes into account the dynamics of triple points where the sharp interface intersects the free boundary of the Si layer. We numerically compare the interface motion predicted by the sharp-interface model with the long-time dynamics of the phase-field model.

Copyright
References
Hide All
[1] Abels H. & Schaubeck S. (2015) Sharp interface limit for the Cahn-Larché system. Asymptotic Anal. 91 (3–4), 283340.
[2] Bazant M. Z. (2013) Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46 (5), 11441160.
[3] Bower A. F., Guduru P. R. & Sethuraman V. A. (2011) A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59 (4), 804828.
[4] Bronsard L., Garcke H. & Stoth B. (1998) A multi-phase Mullins-Sekerka system: Matched asymptotic expansions and an implicit time discretisation or the geometric evolution problem. Proc. Roy. Soc. of Edingburgh: Sec. A Math. 128, 481–06.
[5] Bucci G., Nadimpalli S. P., Sethuraman V. A., Bower A. F. & Guduru P. R. (2014) Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation. J. Mech. Phys. Solids 62, 276294.
[6] Burch D. & Bazant M. Z. (2009) Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. Nano Lett. 9 (11), 3795–3800, pMID: 19824617.
[7] Chakraborty J., Please C. P., Goriely A. & Chapman S. J. (2015) Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery. International Journal of Solids and Structures 54, 6681.
[8] Chakraborty J., Please C. P., Goriely A. & Chapman S. J. (2015) Influence of constraints on axial growth reduction of cylindrical Li-ion battery electrode particles. J. Power Sources 279, 746758, 9th International Conference on Lead-Acid Batteries (LABAT) 2014.
[9] Cubuk E. D. & Kaxiras E. (2014) Theory of structural transformation in lithiated amorphous silicon. Nano Lett. 14 (7), 40654070.
[10] Cui Z., Gao F. & Qu J. (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. Journal of the Mechanics and Physics of Solids 60 (7), 12801295.
[11] Fratzl P., Penrose O. & Lebowitz J. L. (1999) Modeling of phase separation in alloys with coherent elastic misfit. J. Stat. Phys. 95 (5–6), 14291503.
[12] Fried E. & Gurtin M. E. (1994) Dynamic solid-solid transitions with phase characterized by an order parameter. Physica D: Nonlinear Phenom. 72 (4), 287308.
[13] Garcke H. (2003) On Cahn-Hilliard systems with elasticity. Proc. Edinburgh: Sect. A Math. 133 (02), 307331.
[14] Garcke H. & Kwak D. J. C. (2006) On asymptotic limits of Cahn-Hilliard systems with elastic misfit. In: Mielke A. (editor), Analysis, Modeling and Simulation of Multiscale Problems, Springer, Berlin, pp. 87111.
[15] Huang Y., Ngo D. & Rosakis A. (2005) Non-uniform, axisymmetric misfit strain: In thin films bonded on plate substrates/substrate systems: The relation between non-uniform film stresses and system curvatures. Acta Mech. Sin. 21 (4), 362370.
[16] Leo P., Lowengrub J. & Jou H.-J. (1998) A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46 (6), 21132130.
[17] Leo P. & Sekerka R. (1989) Overview no. 86: The effect of surface stress on crystal-melt and crystal-crystal equilibrium. Acta Metall. 37 (12), 31193138.
[18] Leo P. H. & Sekerka R. (1989) The effect of elastic fields on the morphological stability of a precipitate grown from solid solution. Acta Metall. 37 (12), 31393149.
[19] Levitas V. I. & Attariani H. (2014) Anisotropic compositional expansion in elastoplastic materials and corresponding chemical potential: Large-strain formulation and application to amorphous lithiated silicon. J. Mech. Phys. Solids 69, 84111.
[20] Liu X. H., Fan F., Yang H., Zhang S., Huang J. Y. & Zhu T. (2013) Self-limiting lithiation in silicon nanowires. ACS Nano 7 (2), 14951503.
[21] McDowell M. T., Lee S. W., Harris J. T., Korgel B. A., Wang C., Nix W. D. & Cui Y. (2013) In situ tem of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13 (2), 758764.
[22] McDowell M. T., Lee S. W., Nix W. D. & Cui Y. (2013) 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25 (36), 49664985.
[23] Meca E., Münch A. & Wagner B. (2016) Thin-film electrodes for high-capacity lithium-ion batteries: Influence of phase transformations on stress. Proc. R. Soc. A: Math. Phys. Eng. Sci. 472 (2193), 20160093.
[24] Meca E., Shenoy V. B. & Lowengrub J. (2013) Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion. Phys. Rev. E 88, 052409.
[25] Ngo D., Huang Y., Rosakis A. & Feng X. (2006) Spatially non-uniform, isotropic misfit strain in thin films bonded on plate substrates: The relation between non-uniform film stresses and system curvatures. Thin Solid Films 515 (4), 22202229.
[26] Novick-Cohen A. (1988) On the viscous Cahn-Hilliard equation. Material instabilities in continuum mechanics, Edinburgh, 1985–1986, Oxford Sci. Publ., Oxford Univ. Press, New York, pp. 329342.
[27] Owen N., Rubinstein J. & Sternberg P. (1990) Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. R. Soc. Lond. A 429, 505532.
[28] Pego R. L. (1989) Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. London A: Math. Phys. Eng. Sci. 422 (1863), 261278.
[29] Sethuraman V. A., Chon M. J., Shimshak M., Srinivasan V. & Guduru P. R. (2010) In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195 (15), 50625066.
[30] Shenoy V., Johari P. & Qi Y. (2010) Elastic softening of amorphous and crystalline Li–Si phases with increasing Li concentration: A first-principles study. J. Power Sources 195 (19), 68256830.
[31] Wang J. W. et al. (2013) Two-phase electrochemical lithiation in amorphous silicon. Nano Lett. 13 (2), 709715.
[32] Wise S., Kim J. & Lowengrub J. (2007) Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226 (1), 414446.
[33] Zeng Y. & Bazant M. Z. (2014) Phase separation dynamics in isotropic ion-intercalation particles. SIAM J. Appl. Math. 74 (4), 9801004.
[34] Zhao K., Tritsaris G. A., Pharr M., Wang W. L., Okeke O., Suo Z., Vlassak J. J. & Kaxiras E. (2012) Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Lett. 12 (8), 43974403.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 221 *
Loading metrics...

* Views captured on Cambridge Core between 28th March 2017 - 18th January 2018. This data will be updated every 24 hours.