Skip to main content
    • Aa
    • Aa

Spatio-temporal patterns of IED usage by the Provisional Irish Republican Army

  • STEPHEN TENCH (a1) (a2), HANNAH FRY (a2) and PAUL GILL (a1)

In this paper, a unique dataset of improvised explosive device attacks during “The Troubles” in Northern Ireland (NI) is analysed via a Hawkes process model. It is found that this past dependent model is a good fit to improvised explosive device attacks yielding key insights about the nature of terrorism in NI. We also present a novel approach to quantitatively investigate some of the sociological theory surrounding the Provisional Irish Republican Army which challenges previously held assumptions concerning changes seen in the organisation. Finally, we extend our use of the Hawkes process model by considering a multidimensional version which permits both self and mutual-excitations. This allows us to test how the Provisional Irish Republican Army responded to past improvised explosive device attacks on different geographical scales from which we find evidence for the autonomy of the organisation over the six counties of NI and Belfast. By incorporating a second dataset concerning British Security Force (BSF) interventions, the multidimensional model allows us to test counter-terrorism (CT) operations in NI where we find subsequent increases in violence.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] H. Akaike (1974–12) A new look at the statistical model identification. IEEE T. Automat. Contr. 19 (6), 716723.

[2] M. A. Andresen & N. Malleson (2011) Testing the stability of crime patterns: Implications for theory and policy. J. Res. Crime Delinq. 48 (1), 5882.

[3] V. Asal , P. Gill , R. K. Rethemeyer & J. Horgan (2013) Killing range: Explaining lethality variance within a terrorist organization. J. Conict Resolut. 59 (3), 401427.

[5] C. G. Bowsher (2007–12) Modelling security market events in continuous time: Intensity based, multivariate point process models. J. Econometrics 141 (2), 876912.

[6] A. A. Braga (2001-11-01) The effects of hot spots policing on crime. Ann. Am. Acad. Polit. Ss. 578 (1), 104125.

[7] A. Braithwaite & S. D. Johnson (2012-03-01) Space-time modeling of insurgency and counterinsurgency in Iraq. J. Quant. Criminol. 28 (1), 3148.

[10] E. N. Brown , R. Barbieri , V. Ventura , R. E. Kass & L. M. Frank (2002-02) The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput. 14 (2), 325–346.

[12] C. Campbell & I. Connolly (2003) A model for the “War Against Terrorism”? Military intervention in northern Ireland and the 1970 falls curfew. J. Law Soc. 30 (3), 341375.

[13] Z. Chen , P. Purdon , E. N. Brown & R. Barbieri (2012) A unified point process probabilistic framework to assess heartbeat dynamics and autonomic cardiovascular control. Front. Physio. 3 (4), 114.

[22] P. Gao , D. Guo , K. Liao , J. J. Webb & S. L. Cutter (2013) Early detection of terrorism outbreaks using prospective space-time scan statistics. Prof. Geogr. 65 (4), 676691.

[23] A. G. Hawkes (1971-04-01) Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 (1), 8390.

[24] R. A. Hegemann , E. A. Lewis & A. L. Bertozzi (2013) An “estimate & score algorithm” for simultaneous parameter estimation and reconstruction of incomplete data on social networks. Secur. Inform. 2 (1), 113.

[25] J. Horgan & M. Taylor (1997) The provisional irish republican army: Command and functional structure. Terror Polit. Violenc. 9 (3), 132.

[26] N. F. Johnson , P. Medina , G. Zhao , D. S. Messinger , J. Horgan , P. Gill , J. C. Bohorquez , W. Mattson , D. Gangi , H. Qi , P. Manrique , N. Velasquez , A. Morgenstern , E. Restrepo , N. Johnson , M. Spagat & R. Zarama (2013) Simple mathematical law benchmarks human confrontations. Sci. Rep. 3, 16.

[27] S. D. Johnson & K. J. Bowers (2004-04-01) The burglary as clue to the future the beginnings of prospective hot-spotting. Eur. J. Criminol. 1 (2), 237255.

[28] G. Lafree , L. Dugan & R. Korte (2009-02) The impact of british counterterrorist strategies on political violence in northern ireland: Comparing deterrence and backlash models. Criminology 47 (1), 1745.

[29] E. Lewis , G. Mohler , P. J. Brantingham & A. L. Bertozzi (2012-07) Self-exciting point process models of civilian deaths in iraq. Secur. J. 25 (3), 244264.

[31] C. Lum & L. W. Kennedy (2012) Evidence-Based Counterterrorism Policy, New York: Springer Science + Business Media.

[32] F. J. Massey Jr., (1951-03-01) The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc. 46 (253), 6878.

[33] N. Memon , J. D. Farley , D. L. Hicks & T. Rosenorn (2009-08) Mathematical Methods in Counterterrorism, New York: Springer Science + Business Media.

[34] G. Mohler (2013-09) Modeling and estimation of multi-source clustering in crime and security data. Ann. Appl. Stat. 7 (3), 15251539.

[35] G. O. Mohler , M. B. Short , P. J. Brantingham , F. P. Schoenberg & G. E. Tita (2011) Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 106 (493), 100108.

[37] J. A. Nelder & R. Mead (1965-01-01) A simplex method for function minimization. Comput. J. 7 (4), 308313.

[38] K. Nichols & F. P. Schoenberg (2014-05-01) Assessing the dependency between the magnitudes of earthquakes and the magnitudes of their aftershocks. Environmetrics 25 (3), 143151.

[42] T. Ozaki (1979-12-01) Maximum likelihood estimation of hawkes' self-exciting point processes. Ann. I. Stat. Math. 31 (1), 145155.

[43] F. Papangelou (1972-03-01) Integrability of expected increments of point processes and a related random change of scale. T. Am. Math. Soc. 165, 483506.

[45] R. Peng (2003-09) Multi-dimensional point process models in R. J. Stat. Softw. 8 (16), 127.

[46] J. G. Rasmussen (2013-09-01) Bayesian inference for hawkes processes. Methodol. Comput. Appl. 15 (3), 623642.

[50] M. B. Short , G. O. Mohler , P. J. Brantingham & G. E. Tita (2014) Gang rivalry dynamics via coupled point process networks. Discrete Cont. Dyn.-B 19 (5), 14591477.

[51] R. Stevenson & N. Crossley (2014) Change in covert social movement networks: The “inner circle'' of the provisional Irish Republican Army. Social Movement Studies 13 (1), 7091.

[52] A. Stomakhin , M. B. Short & A. L. Bertozzi (2011) Reconstruction of missing data in social networks based on temporal patterns of interactions. Inverse Probl. 27 (11), 115.

[55] G. White , M. D. Porter & L. Mazerolle (2012) Terrorism risk, resilience and volatility: A comparison of terrorism patterns in three southeast asian countries. J. Quant. Criminol. 29 (2), 295320.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 113 *
Loading metrics...

Abstract views

Total abstract views: 649 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th May 2017. This data will be updated every 24 hours.