Skip to main content
×
Home

Stability of weakly dissipative Reissner–Mindlin–Timoshenko plates: A sharp result

  • A. D. S. CAMPELO (a1), D. S. ALMEIDA JÚNIOR (a1) and M. L. SANTOS (a1)
Abstract

In the present article, we show that there exists a critical number that stabilizes the Reissner–Mindlin–Timoshenko system with frictional dissipation acting on rotation angles. We identify two speed characteristics v 1 2:=K1 and v 2 2:=D2, and we show that the system is exponentially stable if and only if \begin{equation*} v_{1}^{2}=v_{2}^{2}. \end{equation*} For v 1 2v 2 2, we prove that the system is polynomially stable and determine an optimal estimate for the decay. To confirm our analytical results, we compute the numerical solutions by means of several numerical experiments by using a finite difference method.

Copyright
Footnotes
Hide All

Dedicated to Prof. Marcelo Moreira Cavalcanti on the occasion of his 60th Birthday.

The first author thanks to PNPD/CAPES for his financial support. The second and third authors thank to IMPA for its hospitality during their stage visiting professor. The second author is supported by CNPq Grant 311553/2013-3 and by CNPq Grant 458866/2014-8 (Universal Project -2014). The third author is supported by CNPq Grant 302899/2015-4 and by CNPq Grant 401769/2016-0 (Universal Project -2016).

Footnotes
References
Hide All
[1] Almeida Júnior D. S., Santos M. L. & Muñoz Rivera J. E. (2013) Stability to weakly dissipative Timoshenko systems. Math. Methods Appl. Sci. 36 (14), 19651976.
[2] Almeida Júnior D. S. & Muñoz Rivera J. E. (2015) Stability criterion to explicit finite difference applied to the Bresse system. Afrika Mathematika 26 (5), 761778.
[3] Ammar-Khodja F., Benabdallah A., Muñoz Rivera J. E. & Racke R. (2003) Energy decay for Timoshenko systems of memory type. J. Differ Equ. 194 (1), 82115.
[4] Anguelov R., Djoko J. K. & Lubuma J. M.-S. (2008) Energy properties preserving schemes for Burgers' equation. Numer. Methods Partial Differ. Equ. 24 (1), 4159.
[5] Alves M., Muñoz Rivera J. E., Sepúlveda M., Villagrán O. V. & Zegarra Garay M. (2014) The asymptotic behavior of the linear transmission problem in viscoelasticity. Math. Nachr. 287 (5–6), 483497.
[6] Borichev A. & Tomilov Y. (2009) Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347 (2), 455478.
[7] Brezis H. (1992) Analyse Fonctionelle, Théorie et Applications Masson, Paris.
[8] Campelo A., Almeida Júnior D. & Santos M. L. (2016) Stability to the dissipative Reissner-Mindlin-Timoshenko acting on displacement equation. Eur. J. Appl. Math. 27 (2), 157193.
[9] Fernándes Sare H. D. (2009) On the stability of Mindlin–Timoshenko plates. Q. Appl Math LXVII (2), 249263.
[10] Grobbelaar-Van Dalsen M. (2011) Strong stabilization of models incorporating the thermoelastic Reissner–Mindlin plate equations with second sound. Appl. Anal. 90 (9), 14191449.
[11] Grobbelaar-Van Dalsen M. (2013) Stabilization of a thermoelastic Mindlin-Timoshenko plate model revisited, Z. Angew. Math. Phys. 64 (4), 13051325.
[12] Grobbelaar-Van Dalsen M. (2015) Polynomial decay rate of a thermoelastic Mindlin–Timoshenko plate model with Dirichlet boundary conditions. Z. Angew. Math. Phys. 66 (1), 113128.
[13] Haraux A. (1989) Une remarque sur la stabilisation de certains systèmes du deuxième ordere en tems. Port. Math. 46 (3), 245258.
[14] Huang F. (1985) Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differential Equations, 1 (1), 4356.
[15] Jovanović B. S. & Süli E. (2014) Analysis of Finite Difference Schemes. For Linear Partial Differential Equations with Generalized Solutions. Springer Series in Computational Mathematics, Vol. 46, Springer London, 408 pages.
[16] Kim J. & Renardy Y. (1987) Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25 (6), 14171429.
[17] Lagnese J. & Lions J. (1988) Modelling, Analysis and Control of Thin Plates. Collection RMA, Masson, Paris.
[18] Lagnese J. (1989) Boundary Stabilization of Thin Plates. SIAM, Philadelphia.
[19] Liu Z. & Zheng S. (1999) Semigroups Associated with Dissipative Systems, In CRC Reseach Notes in Mathematics, Vol. 398, Chapman & Hall, CRC Press. Taylor & Francis Group.
[20] Muñoz Rivera J. E. & Portillo Oquendo H. (2003) Asymptotic behavior on a Mindlin–Timoshenko plate with viscoelastic dissipation on the boundary. Funkcialaj Ekvacioj. 46 (3), 363382.
[21] Muñoz Rivera J. E. & Racke R. (2002) Mildly dissipative nonlinear Timoshenko systems–Global existence and exponential stability. J. Math. Anal. Appl. 276 (1), 248278.
[22] Muñoz Rivera J. & Racke R. (2003) Global stability for damped Timoshenko systems. Discrete Continuous Dyn. Syst. 9 (6), 16251639.
[23] Negreanu M. & Zuazua E. (2003) Uniform boundary controllability of a discrete 1-D wave equations. Syst. Control Lett. 48 (3–4), 261279.
[24] Pazy A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. Vol. 44, Springer-Verlag, New York, 282 pages.
[25] Pokojovy M. (2015) On stability of hyperbolic thermoelastic Reissner-Mindlin-Timoshenko plates. Math. Methods Appl. Sci. 38 (7), 12251246.
[26] Prüss J. (1984) On the spectrum of C 0-semigroups. Trans. Am. Math. Soc. 284, 847857.
[27] Raposo C., Ferreira J., Santos M. L. & Castro N. (2005) Exponential stability for the Timoshenko beam with two weak dampings. Appl. Math. Lett. 18 (5), 535541.
[28] Santos M. (2002) Decay rates for solutions of a Timoshenko system with a memory condition at the boundary. Abstr. Appl. Anal. 7 (10), 531546.
[29] Santos M., Almeida Júnior D. S. & Muñoz Rivera J. (2012) The stability number of the Timoshenko system with second sound. J. Differ. Equ. 253 (9), 27152733.
[30] Soufyane A. (1999) Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci., Paris, Série I - Math. 328 (8), 731734.
[31] Süli E. & Mayers D. (2003) An Introduction to Numerical Analysis. Cambridge University Press, 433 pages.
[32] Wright J. (1987) A mixed time integration method for Timoshenko and Mindlin type elements. Commun. Appl. Numer. Methods 3 (3), 181185.
[33] Wright J. (1998) Numerical stability of a variable time step explicit method for Timoshenko and Mindlin type structures. Commun. Numer. Methods Eng. 14 (2), 8186.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 214 *
Loading metrics...

* Views captured on Cambridge Core between 27th April 2017 - 22nd November 2017. This data will be updated every 24 hours.