Skip to main content Accessibility help
×
Home

Steady and quasi-steady thin viscous flows near the edge of a solid surface

  • G. I. BARENBLATT (a1), M. BERTSCH (a2) and L. GIACOMELLI (a3)

Abstract

A new approach is proposed for the description of thin viscous flows near the edges of a solid surface. For a steady flow, the lubrication approximation and the no-slip condition are assumed to be valid on most of the surface, except for relatively small neighbourhoods of the edges, where a universality principle is postulated: the behaviour of the liquid in these regions is universally determined by flux, external conditions and material properties. The resulting mathematical model is formulated as an ordinary differential equation involving the height of the liquid film and the flux as unknowns, and analytical results are outlined. The form of the universal functions which describe the behaviour in the edge regions is also discussed, obtaining conditions of compatibility with lubrication theory for small fluxes. Finally, an ordinary differential equation is introduced for the description of intermediate asymptotic profiles of a liquid film which flows off a bounded solid surface.

Copyright

References

Hide All
[1]Ansini, L. & Giacomelli, L. (2004) Doubly nonlinear thin-film equations in one space dimension. Arch. Rat. Mech. Anal. 173, 89131.
[2]Barenblatt, G. I., Beretta, E. & Bertsch, M. (1997) The problem of the spreading of a liquid film along a solid surface: A new mathematical formulation. Proc. Acad. Sci. USA 94, 1002410030.
[3]Bernis, F., Hulshof, J. & King, J. R. (2000) Dipoles and similarity solutions of the thin film equation in the half-line. Nonlinearity 13, 413439.
[4]Bielarz, C. & Kalliadasis, S. (2003) Time-dependent free-surface thin film flows over topography. Phys. Fluids 15, 25122524.
[5]Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. (2009) Wetting and spreading. Rev. Mod. Phys. 81, 739805.
[6]Bowen, M., Hulshof, J. & King, J. R. (2001) Anomalous exponents and dipole solutions for the thin film equation. SIAM J. Appl. Math. 62, 149179.
[7]Bowen, M. & King, J. R. (2001) Asymptotic behaviour of the thin film equation in bounded domains. Eur. J. Appl. Math. 12, 135157.
[8]Bowen, M. & King, J. K. (2001) Moving boundary problems and non-uniqueness for the thin film equation. Eur. J. Appl. Math. 12, 321356.
[9]Bowen, M. & Witelski, T. P. (2006) The linear limit of the dipole problem for the thin film equation. SIAM J. Appl. Math. 66, 17271748.
[10]Buckingham, R., Shearer, M. & Bertozzi, A. (2002) Thin film traveling waves and the Navier slip condition. SIAM J. Appl. Math. 63, 722744.
[11]Craster, R. V. & Matar, O. K. (2009) Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.
[12]de Gennes, P. G. (1985) Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827863.
[13]Dussan V., E. B., & Davis, S. H. (1974) On the motion of a fluid–fluid interface along a solid surface. J. Fluid Mech. 65, 7195.
[14]Giacomelli, L. (2008) Nonlinear higher-order boundary value problems describing thin viscous flows near edges. J. Math. Anal. Appl. 345, 632649.
[15]Giacomelli, L., Knuepfer, H. & Otto, F. (2008) Smooth zero-contact-angle solutions to the thin-film equation around the steady state. J. Differ. Equ. 245, 14541506.
[16]Giacomelli, L. & Otto, F. (2003) Rigorous lubrication approximation. Interfaces Free Bound. 5, 483529.
[17]Greenspan, H. P. (1978) On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84, 125143.
[18]Grün, G. (2004) Droplet spreading under weak slippage — existence for the Cauchy problem, Comm. Partial Differ. Equ. 29, 16971744.
[19]Huh, C. & Scriven, L. E. (1971) Hydrodynamic model of a steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.
[20]Kalliadasis, S., Bielarz, C. & Homsy, G. M. (2000) Steady free-surface thin film flows over topography. Phys. Fluids 12, 18891898.
[21]King, J. R. (2007) Microscale sensitivity in moving-boundary problems for the thin-film equation. Control methods in PDE-dynamical systems. Contemp. Math. 426, 269292.
[22]Lagerstrom, P. A. (1988) Matched asymptotic expansions. Ideas and techniques. Appl. Math. Sci., 76. Springer-Verlag, New York.
[23]Laugesen, R. S. & Pugh, M. C. (2000) Linear stability of steady states for thin film and Cahn-Hilliard type equations. Arch. Ration. Mech. Anal. 154, 351.
[24]Laugesen, R. S. & Pugh, M. C. (2000) Properties of steady states for thin film equations. Eur. J. Appl. Math. 11, 293351.
[25]Laugesen, R. S. & Pugh, M. C. (2002) Energy levels of steady states for thin-film-type equations. J. Differ. Equ. 182, 377415.
[26]Laugesen, R. S. & Pugh, M. C. (2002) Heteroclinic orbits, mobility parameters and stability for thin film type equations. Electron. J. Differ. Equ. 2002 No. 95, 129.
[27]Moosavi, A., Rauscher, M. & Dietrich, S. (2009) Dynamics of nanodroplets on topographically structured substrates. J. Phys.: Condens. Matter 21, 464120.
[28]Oron, A., Davis, S. H. & Bankoff, S. G. (1997) Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.
[29]Shikhmurzaev, Y. D. (2008) Capillary Flows With Forming Interfaces, Chapman & Hall/CRC, Boca Raton, FL.
[30]Thompson, P. A. & Troian, S. M. (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389, 360362.
[31]van den Berg, J. B., Bowen, M., King, J. R. & El-Sheikh, M. M. A. (2004) The self-similar solution for draining in the thin film equation. Eur. J. Appl. Math. 15, 329346.

Steady and quasi-steady thin viscous flows near the edge of a solid surface

  • G. I. BARENBLATT (a1), M. BERTSCH (a2) and L. GIACOMELLI (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed