[1]
AncoS. C. & BlumanG. (1997) Direct construction of conservation laws from field equations. Phys. Rev. Lett.
78
(15), 2869–2873.

[2]
AncoS. C. & BlumanG. (2002) Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications.
Euro. J. Appl. Math.
13, 545–566.

[3]
AncoS. C. & BlumanG. (2002) Direct construction method for conservation laws of partial differential equations. II. General treatment.
Euro. J. Appl. Math.
13, 567–585.

[4]
OlverP. (1986) Applications of Lie Groups to Differential Equations, Springer-Verlag, New York.

[5]
BlumanG. & AncoS. C. (2002) Symmetry and Integration Methods for Differential Equations, Springer Applied Mathematics Series, Vol. 154, Springer-Verlag, New York.

[6]
BlumanG., CheviakovA. & AncoS. C. (2010) Applications of Symmetry Methods to Partial Differential Equations, Springer Applied Mathematics Series, Vol. 168, Springer, New York.

[7]
Martinez AlonsoL. (1979) On the Noether map.
Lett. Math. Phys.
3, 419–424.

[8]
VinogradovA. M. (1984) Local symmetries and conservation laws. Acta Appl. Math.
2
(1), 21–78.

[9]
AncoS. C. (2017) Generalization of Noether's theorem in modern form to non-variational partial differential equations, In: Melnik R., Makarov R., Belair J. (editors), Recent progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Institute Communications, Vol. 79.

[10]
BlumanG., CheviakovA. & AncoS. C. (2008) Construction of conservation laws: How the direct method generalizes Noether's theorem. In: Group Analysis of Differential Equations and Integrable Systems (Proceedings of the 4th International Workshop), 2008, Cyprus, pp. 13–35.

[11]
IbragimovN. H. (1985) Transformation Groups Applied to Mathematical Physics. (translated from Russian), Mathematics and its Applications (Soviet Series), Reidel, Dordrecht.

[12]
KhamitovaR. S. (1982) The structure of a group and the basis of conservation laws. (Russian) Teoret. Mat. Fiz.
52
(2), 244–251; English translation *Theoret. Math. Phys.*
**52**(2), 777–781.

[13]
IbragimovN. H., KaraA. H. & MahomedF. M. (1998) Lie-Bäcklund and Noether symmetries with applications. Nonlinear Dyn.
15
(2), 115–136.

[14]
BlumanG. Temuerchaolu & AncoS. C. (2006) New conservation laws obtained directly from symmetry action on known conservation laws.
J. Math. Anal. Appl.
322, 233–250.

[15]
KaraA. H. & MahomedF. M. (2002) A basis of conservation laws for partial differential equations.
J. Nonlinear Math. Phys.
9, 60–72.

[16]
KaraA. H. & MahomedF. M. (2000) Relationship between symmetries and conservation laws.
Int. J. Theor. Phys.
39, 23–40.

[17]
AncoS. C. (2016) Symmetry properties of conservation laws. Int. J. Mod. Phys. B
30, 1640004 (12pp).

[18]
SchwarzF. (1998) Janet bases for symmetry groups. In: Buchberger B. & Winkler F. (editors), Groebner Bases and Applications, Lecture Notes Series, Vol. 251, London Mathematical Society, pp. 221–234.

[19]
SchwarzF. (2007) Algorithmic Lie Theory for Solving Linear Ordinary Differential Equations, Chapman & Hall/CRC.

[20]
VerbotevskyA. (1997) Notes on the horizontal cohomology. In: Henneaux M., Krasil'shchik J., Vinogradov A. (editors), Secondary Calculus and Cohomological Physics, Contemporary Mathematics, Vol. 219, American Mathematical Society, Providence, pp. 211–232.

[21]
WolfT. (2002) A comparison of four approaches to the calculation of conservation laws.
Euro. J. Appl. Math.
13, 129–152.

[22]
AncoS. C. (2003) Conservation laws of scaling-invariant field equations.
J. Phys. A: Math. Gen.
36, 8623–8638.

[23]
DeconinckB. & NivalaM. (2009) Symbolic integration and summation using homotopy methods.
Math. Comput. Simul.
80, 825–836.

[24]
PooleD. & HeremanW. (2010) The homotopy operator method for symbolic integration by parts and inversion of divergences with applications.
Appl. Anal.
89, 433–455.

[25]
CavigliaG. (1986) Symmetry transformations, isovectors, and conservation laws.
J. Math. Phys.
27, 972–978.

[26]
LunevF. A. (1990) An analogue of the Noether theorem for non-Noether and nonlocal symmetries. (Russian) Teoret. Mat. Fiz.
84
(2), 205–210; English translation *Theoret. Math. Phys.*
**84**(2), 816–820.

[27]
ZharinovV. V. (1992) Lecture Notes on Geometrical Aspects of Partial Differential Equations, Series on Soviet and East European Mathematics, Vol. 9, World Scientific, River Edge, NJ.

[28]
AncoS. C. & BlumanG. (1996) Derivation of conservation laws from nonlocal symmetries of differential equations.
J. Math. Phys.
37, 2361–2375.

[29]
KrookM. & WuT. T. (1976) Formation of Maxwellian tails.
Phys. Rev. Lett.
36, 1107–1109.

[30]
EulerN., LeachP. G. L., MahomedF. M. & SteebW.-H. (1988) Symmetry vector fields and similarity solutions of a nonlinear field equation describing the relaxation to a Maxwell distribution.
Int. J. Theor. Phys.
27, 717–723.

[31]
BatchelorG. K. (1967) An Introduction to Fluid Dynamics, Cambridge University Press.

[32]
DullinH. R., GottwaldG. A. & HolmD. D. (2004) On asymptotically equivalent shallow water wave equations.
Physica D
190, 1–14.

[33]
CamassaR. & HolmD. D. (1993) An integrable shallow water equation with peaked solitons.
Phys. Rev. Lett.
71, 1661–1664.

[34]
DegaspersisA. & ProcesiM. (1999) Asymptotic integrability. In: Degaspersis A. & Gaeta G. (editors), Symmetry and Perturbation Theory, World Scientific, pp. 23–37.

[35]
DegaspersisA., HoneA. N. W. & HolmD. D. (2003) Integrable and non-integrable equations with peakons. In: Ablowitz M. J., Boiti M., Pempinelli F. & Prinari B. (editors), Nonlinear Physics: Theory and Experiment II, World Scientific, pp. 37–43.

[36]
SinghK., GuptaR. K. & KumarS. (2011) Exact solutions of b-family equation: Classical Lie approach and direct method.
Inter. J. Nonlin. Sci.
11, 59–67.