Skip to main content
×
×
Home

Synchrony in networks of coupled non-smooth dynamical systems: Extending the master stability function

  • STEPHEN COOMBES (a1) and RÜDIGER THUL (a1)
Abstract

The master stability function is a powerful tool for determining synchrony in high-dimensional networks of coupled limit cycle oscillators. In part, this approach relies on the analysis of a low-dimensional variational equation around a periodic orbit. For smooth dynamical systems, this orbit is not generically available in closed form. However, many models in physics, engineering and biology admit to non-smooth piece-wise linear caricatures, for which it is possible to construct periodic orbits without recourse to numerical evolution of trajectories. A classic example is the McKean model of an excitable system that has been extensively studied in the mathematical neuroscience community. Understandably, the master stability function cannot be immediately applied to networks of such non-smooth elements. Here, we show how to extend the master stability function to non-smooth planar piece-wise linear systems, and in the process demonstrate that considerable insight into network dynamics can be obtained. In illustration, we highlight an inverse period-doubling route to synchrony, under variation in coupling strength, in globally linearly coupled networks for which the node dynamics is poised near a homoclinic bifurcation. Moreover, for a star graph, we establish a mechanism for achieving so-called remote synchronisation (where the hub oscillator does not synchronise with the rest of the network), even when all the oscillators are identical. We contrast this with node dynamics close to a non-smooth Andronov–Hopf bifurcation and also a saddle node bifurcation of limit cycles, for which no such bifurcation of synchrony occurs.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Synchrony in networks of coupled non-smooth dynamical systems: Extending the master stability function
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Synchrony in networks of coupled non-smooth dynamical systems: Extending the master stability function
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Synchrony in networks of coupled non-smooth dynamical systems: Extending the master stability function
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
[1] Newman M. E. J. (2010) Networks: An Introduction, Oxford University Press, Oxford.
[2] Arenas A., Díaz-Guilera A. & Pérez-Vicente C. J. (2006) Synchronization processes in complex networks. Physica D 224, 2734.
[3] Porter M. A. and Gleeson J. P. (2016) Dynamical systems on networks: A tutorial. Frontiers Appl. Dyn. Syst.: Rev. Tutorials 4, 179.
[4] Lazer A. C. & McKenna P. J. (1990) Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 32, 537578.
[5] Andronov A., Vitt A. & Khaikin S. (1966) Theory of Oscillators, Pergamon Press, Oxford.
[6] Acary V., Bonnefon O. & Brogliato B. (2011) Nonsmooth Modeling and Simulation for Switched Circuits, Lecture notes in Electrical Engineering, Vol. 69, Springer, Dordrecht.
[7] di Bernardo M., Budd C., Champneys A. R. & Kowalczyk P. (2008) Piecewise-smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences, Springer Springer-Verlag, London.
[8] McKean H. P. (1970) Nagumo's equation. Adv. Math. 4, 209223.
[9] Fitzhugh R. (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445466.
[10] Bishop S. R. (1994) Impact oscillators. Phil. Trans.: Phys. Sci. Eng. 347, 347351.
[11] Coombes S., Thul R. & Wedgwood K. C. A. (2012) Nonsmooth dynamics in spiking neuron models. Physica D 241, 20422057.
[12] Thul R. & Coombes S. (2010) Understanding cardiac alternans: A piecewise linear modelling framework. Chaos 20, 045102.
[13] Makarenkov O. & Lamb J. S. W. (2012) Dynamics and bifurcations of nonsmooth systems: A survey. Physica D 241, 18261844.
[14] Pecora L. M. & Carroll T. L. (1998) Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 21092112.
[15] Ponce E. (2014) Bifurcations in piecewise linear systems: Case studies. In: VI Workshop on Dynamical Systems - MAT 70 An International Conference on Dynamical Systems celebrating the 70th birthday of Marco Antonio Teixeira. Electronically available at http://www.ime.unicamp.br/~rmiranda/mat70/MAT70/Welcome_files/NotesMAT70EPN.pdf
[16] di Bernardo M., Budd C. J., Champneys A. R., Kowalczyk P., Nordmark A. B., Tost G. O. & Piiroinen P. T. (2008) Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50, 629701.
[17] di Bernardo M., Feigin M. I., Hogan S. J. & Homer M. E. (1999) Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems. Chaos, Solitons Fractals 10, 18811908.
[18] Harris J. & Ermentrout B. (2015) Bifurcations in the Wilson-Cowan equations with nonsmooth firing rate. SIAM J. Appl. Dyn. Syst. 14, 4372.
[19] Leine R. I., Van Campen D. H. & Van de Vrande B. L. (2000) Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105164.
[20] Filippov A. F. (1988) Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, Norwell.
[21] Tonnelier A. (2007) McKean model. Scholarpedia 12071 doi:10.4249/scholarpedia.2795.
[22] Tonnelier A. (2002) The McKean's caricature of the FitzHugh-Nagumo model I. The space-clamped system. SIAM J. Appl. Math. 63, 459484.
[23] Rinzel J. (1975) Spatial stabillty of traveling wave solutions of a nerve conduction equation. Biophys. J. 15, 975988.
[24] Simpson D. J. W. & Meiss J. D. (2007) Andronov–Hopf bifurcations in planar, piecewise-smooth, continuous flows. Phys. Lett. A 371, 213220.
[25] Xu B., Yang F., Tang Y. & Lin M. (2013) Homoclinic bifurcations in planar piecewise-linear systems. Discrete Dyn. Nature Soc. 2013, 19.
[26] Llibre J., Novaes D. D. & Teixeira M. A. (2015) Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differentiable center with two zones. Int. J. Bifurcation Chaos 25, 1550144.
[27] Du Z., Li Y. & Zhang W. (2008) Bifurcation of periodic orbits in a class of planar Filippov systems. Nonlinear Anal.: Theory, Methods Appl. 69, 36103628.
[28] Afraimovich V. S., Gonchenko S. V., Lerman L. M., Shilnikov A. L. & Turaev D. V. (2014) Scientific heritage of L. P. Shilnikov. Regular Chaotic Dyn. 19 (4), 435460.
[29] Neimark Y. I. & Shil'nikov L. P. (1959) Application of the small-parameter method to a system of differential equations with discontinuous right-hand sides. Izv. Akad. Nauk SSSR 6, 5159.
[30] Neimark Y. I. & Shil'nikov L. P. (1960) The study of dynamical systems close to the piecewise linear. Radio Phys. 3, 478495.
[31] Pikovsky A., Rosenblum M. & Kurths J. (2001) Synchronization. Cambridge Nonlinear Science Series, Vol. 12, Cambridge University Press, Cambridge.
[32] Arenas A., Díaz-Guilera A., Kurths J., Moreno Y. & Zhou C. (2008) Synchronization in complex networks. Phys. Rep. 469, 93153.
[33] Ladenbauer J., Lehnert J., Rankoohi H., Dahms T., Schöll E. & Obermayer K. (2013) Adaptation controls synchrony and cluster states of coupled threshold-model neurons. Phys. Rev. E 88, 042713(1–9).
[34] Pecora L. M., Sorrentino F., Hagerstrom A. M., Murphy T. E. & Roy R. (2014) Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nature Commun. 5 (4079).
[35] Steur E., Tyukin I. & Nijmeijer H. (2009) Semi-passivity and synchronization of diffusively coupled neuronal oscillators. Physica D 238, 21192128.
[36] Coombes S. (1999) Liapunov exponents and mode-locked solutions for integrate-and-fire dynamical systems. Phys. Lett. A 255, 4957.
[37] Coombes S. (2008) Neuronal networks with gap junctions: A study of piece-wise linear planar neuron models. SIAM J. Appl. Dyn. Syst. 7, 11011129.
[38] Bergner A., Frasca M., Sciuto G., Buscarino A., Ngamga E. J., Fortuna L. & Kurths J. (2012) Remote synchronization in star networks. Phys. Rev. E 85, 026208.
[39] Frasca M., Bergner A., Kurths J. & Fortuna L. (2012) Bifurcations in a star-like network of Stuart-Landau oscillators. Int. J. Bifurcation Chaos 22, 1250173.
[40] Zhao L., Beverlin B., Netoff T. & Nykamp D. Q. (2011) Synchronization from second order network connectivity statistics. Frontiers Comput. Neurosci. 5 (28), 116.
[41] Lodato I., Boccaletti S. & Latora V. (2007) Synchronization properties of network motifs. Europhys. Lett. 65, 28001.
[42] Ashwin P., Coombes S. & Nicks R. (2016) Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6 (2).
[43] Hoppensteadt F. C. & Izhikevich E. M. (1997) Weakly Connected Neural Networks, Springer, New York.
[44] Simpson D. J. W. & Kuske R. (2011) Mixed-mode oscillations in a stochastic, piecewise-linear system. Physica D 240, 11891198.
[45] MacArthur B. D., Sanchez-Garcia R. J. & Anderson J. W. (2008) Symmetry in complex networks. Discrete Appl. Math. 156, 3525.
[46] Izhikevich E. M. (2003) Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 15691572.
[47] Coombes S. & Zachariou M. (2009) Gap junctions and emergent rhythms. In: Coherent Behavior in Neuronal Networks, Computational Neuroscience Series, Springer, Dordrecht pp. 7794.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 305 *
Loading metrics...

Abstract views

Total abstract views: 438 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st February 2018. This data will be updated every 24 hours.