Skip to main content Accessibility help
×
Home

Systematic derivation of a surface polarisation model for planar perovskite solar cells

  • N. E. COURTIER (a1), J. M. FOSTER (a2), S. E. J. O'KANE (a3), A. B. WALKER (a3) and G. RICHARDSON (a1)...
  • Please note a correction has been issued for this article.

Abstract

Increasing evidence suggests that the presence of mobile ions in perovskite solar cells (PSCs) can cause a current–voltage curve hysteresis. Steady state and transient current–voltage characteristics of a planar metal halide CH3NH3PbI3 PSC are analysed with a drift-diffusion model that accounts for both charge transport and ion vacancy motion. The high ion vacancy density within the perovskite layer gives rise to narrow Debye layers (typical width ~2 nm), adjacent to the interfaces with the transport layers, over which large drops in the electric potential occur and in which significant charge is stored. Large disparities between (I) the width of the Debye layers and that of the perovskite layer (~600 nm) and (II) the ion vacancy density and the charge carrier densities motivate an asymptotic approach to solving the model, while the stiffness of the equations renders standard solution methods unreliable. We derive a simplified surface polarisation model in which the slow ion dynamics are replaced by interfacial (non-linear) capacitances at the perovskite interfaces. Favourable comparison is made between the results of the asymptotic approach and numerical solutions for a realistic cell over a wide range of operating conditions of practical interest.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Systematic derivation of a surface polarisation model for planar perovskite solar cells
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Systematic derivation of a surface polarisation model for planar perovskite solar cells
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Systematic derivation of a surface polarisation model for planar perovskite solar cells
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Footnotes

Hide All

NEC is supported by an EPSRC funded studentship from the CDT in New and Sustainable Photovoltaics. SEJO'K was supported by EPSRC grant EP/J017361/1. ABW acknowledges funding from the European Union Horizon 2020 research and innovation programme under Grant no. 676629.

Footnotes

References

Hide All
[1] Advanpix (2017) Multiprecision Computing Toolbox for MATLAB version 4.3.2.12144.
[2] Black, J. P., Breward, C. J. & Howell, P. D. (2017) Quantum mechanical effects in continuum charge flow models. IMA J. Appl. Math. 82, 251279.
[3] Brinkman, D., Fellner, K., Markowich, P. A. & Wolfram, M.-T. (2013) A drift–diffusion–reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2D HDG finite element scheme. Math. Models Methods Appl. Sci. 23, 839872.
[4] Brivio, F., Butler, K. T., Walsh, A. & van Schilfgaarde, M. (2014) Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204.
[5] Calado, P., Telford, A. M., Bryant, D., Li, X., Nelson, J., O'Regan, B. C. & Barnes, P. R. (2016) Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831.
[6] Correa-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jacobsson, T. J., Grätzel, M. & Hagfeldt, A. (2017) The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10 (3), 710727.
[7] Courtier, N. E., Richardson, G. & Foster, J. M. (2018) A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells. arXiv:1801.05737v1.
[8] de Quilettes, D. W., Vorpahl, S. M., Stranks, S. D., Nagaoka, H., Eperon, G. E., Ziffer, M. E., Snaith, H. J. & Ginger, D. S. (2015) Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683686.
[9] Domanski, K., Roose, B., Matsui, T., Saliba, M., Turren-Cruz, S.-H., Correa-Baena, J.-P., Carmona, C. R., Richardson, G., Foster, J. M., Angelis, F. D., Ball, J. M., Petrozza, A., Mine, N., Nazeeruddin, M. K., Tress, W., Grätzel, M., Steiner, U., Hagfeldt, A. & Abate, A. (2017) Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604613.
[10] Eames, C., Frost, J. M., Barnes, P. R. F., O'Regan, B. C., Walsh, A. & Islam, M. S. (2015) Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497.
[11] Foster, J. M., Kirkpatrick, J. & Richardson, G. (2013) Asymptotic and numerical prediction of current-voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit. J. Appl. Phys. 114, 104501.
[12] Foster, J. M., Snaith, H. J., Leijtens, T. & Richardson, G. (2014) A model for the operation of perovskite based hybrid solar cells: Formulation, analysis, and comparison to experiment. SIAM J. Appl. Math. 74, 19351966.
[13] Gottesman, R., Lopez-Varo, P., Gouda, L., Jimenez-Tejada, J. A., Hu, J., Tirosh, S., Zaban, A. & Bisquert, J. (2016) Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. Chem 1, 776789.
[14] Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J. E., Grätzel, M. & Park, N.-G. (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591.
[15] Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 60506051.
[16] Koutselas, I. B., Ducasse, L. & Papavassiliou, G. C. (1996) Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units. J. Phys.: Condens. Matter 8, 12171227.
[17] Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643647.
[18] Löper, P., Stuckelberger, M., Niesen, B., Werner, J., Filipič, M., Moon, S.-J., Yum, J.-H., Topič, M., Wolf, S. D. & Ballif, C. (2015) Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6 (1), 6671.
[19] The MathWorks, Inc. (2016) MATLAB version 9.1.0.441655 (R2016b).
[20] Nelson, J. (2003) The Physics of Solar Cells, Imperial College Press, London, UK.
[21] Neukom, M. T., Züfle, S., Knapp, E., Makha, M., Hany, R. & Ruhstaller, B. (2017) Why perovskite solar cells with high efficiency show small IV-curve hysteresis. Sol. Energy Mater. Sol. Cells 169, 159166.
[22] Niu, G., Guo, X. & Wang, L. (2015) Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 89708980.
[23] O'Kane, S. E. J., Richardson, G., Pockett, A., Niemann, R. G., Cave, J. M., Sakai, N., Eperon, G. E., Snaith, H. J., Foster, J. M., Cameron, P. J. & Walker, A. B. (2017) Measurement and modelling of dark current decay transients in perovskite solar cells. J. Mater. Chem. C 5, 452462.
[24] Please, C. (1982) An analysis of semiconductor P-N junctions. IMA J. Appl. Math. 28, 301318.
[25] Pockett, A., Eperon, G. E., Peltola, T., Snaith, H. J., Walker, A., Peter, L. M. & Cameron, P. J. (2015) Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. J. Phys. Chem. C 119, 34563465.
[26] Ravishankar, S., Almora, O., Echeverría-Arrondo, C., Ghahremanirad, E., Aranda, C., Guerrero, A., Fabregat-Santiago, F., Zaban, A., Garcia-Belmonte, G. & Bisquert, J. (2017) Surface polarization model for the dynamic hysteresis of perovskite solar cells. J. Phys. Chem. Lett. 8, 915921.
[27] Richardson, G. (2009) A multiscale approach to modelling electrochemical processes occurring across the cell membrane with application to transmission of action potentials. Math. Med. Biol. 26, 201224.
[28] Richardson, G., O'Kane, S. E. J., Niemann, R. G., Peltola, T. A., Foster, J. M., Cameron, P. J. & Walker, A. B. (2016) Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells? Energy Environ. Sci. 9, 14761485.
[29] Richardson, G., Please, C. & Styles, V. (2017) Derivation and solution of effective medium equations for bulk heterojunction organic solar cells. Eur. J. Appl. Math. 28, 9731014.
[30] Richardson, G. & Walker, A. B. (2016) Drift diffusion modelling of charge transport in photovoltaic devices. In: Da Como, E., De Angelis, F., Snaith, H. & Walker, A. (editors), Unconventional Thin Film Photovoltaics, Royal Society of Chemistry, Cambridge, UK, pp. 297331.
[31] Schmeiser, C. (1992) Free boundaries in semiconductor devices. Proc. Free Boundary Problems: Theory and Applications. In: Chadham, J. & Rasmussen, H. (editors), Pitman Research Notes Mathematics Series, vol. 3, Longman, Harlow, pp. 268268.
[32] Schmeiser, C. & Unterreiter, A. (1994) The derivation of analytic device models by asymptotic methods. In: Coughran, W. M. Jr., Cole, J., Lloyd, P. & White, J. K. (editors), vol 59, Semiconductors. The IMA Volumes in Mathematics and its Applications, Springer, New York, NY, pp. 343363.
[33] Schulz, P., Edri, E., Kirmayer, S., Hodes, G., Cahen, D. & Kahn, A. (2014) Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 13771381.
[34] Shen, H., Jacobs, D. A., Wu, Y., Duong, T., Peng, J., Wen, X., Fu, X., Karuturi, S. K., White, T. P., Weber, K. & Catchpole, K. R. (2017) Inverted hysteresis in CH3NH3PbI3 solar cells: Role of stoichiometry and band alignment. J. Phys. Chem. Lett. 8, 26722680.
[35] Snaith, H. J., Abate, A., Ball, J. M., Eperon, G. E., Leijtens, T., Noel, N. K., Stranks, S. D., Wang, J. T.-W., Wojciechowski, K. & Zhang, W. (2014) Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 15111515.
[36] Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. (2013) Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 90199038.
[37] Stranks, S. D., Burlakov, V. M., Leijtens, T., Ball, J. M., Goriely, A. & Snaith, H. J. (2014) Recombination kinetics in organic-inorganic perovskites: Excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007.
[38] Stranks, S. D. & Snaith, H. J. (2015) Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391402.
[39] Tan, H., Jain, A., Voznyy, O., Lan, X., de Arquer, F. P. G., Fan, J. Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L. N., Zhao, Y., Lu, Z.-H., Yang, Z., Hoogland, S. & Sargent, E. H. (2017) Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722726.
[40] van Reenen, S., Kemerink, M. & Snaith, H. J. (2015) Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 38083814.
[41] Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. (2015) Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. 127, 18111814.

Keywords

Systematic derivation of a surface polarisation model for planar perovskite solar cells

  • N. E. COURTIER (a1), J. M. FOSTER (a2), S. E. J. O'KANE (a3), A. B. WALKER (a3) and G. RICHARDSON (a1)...
  • Please note a correction has been issued for this article.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: