Skip to main content
×
×
Home

Topological stability criteria for networking dynamical systems with Hermitian Jacobian

  • A. L. DO (a1), S. BOCCALETTI (a2) (a3), J. EPPERLEIN (a4), S. SIEGMUND (a4) and T. GROSS (a5)...
Abstract

The central theme of complex systems research is to understand the emergent macroscopic properties of a system from the interplay of its microscopic constituents. The emergence of macroscopic properties is often intimately related to the structure of the microscopic interactions. Here, we present an analytical approach for deriving necessary conditions that an interaction network has to obey in order to support a given type of macroscopic behaviour. The approach is based on a graphical notation, which allows rewriting Jacobi's signature criterion in an interpretable form and which can be applied to many systems of symmetrically coupled units. The derived conditions pertain to structures on all scales, ranging from individual nodes to the interaction network as a whole. For the purpose of illustration, we consider the example of synchronization, specifically the (heterogeneous) Kuramoto model and an adaptive variant. The results complete and extend the previous analysis of Do et al. (2012 Phys. Rev. Lett. 108, 194102).

Copyright
References
Hide All
[1] Acebron, J. A., Bonilla, L. L., Perez, Vicente, C. J., Ritort, F. & Spigler, R. (2005) The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137.
[2] Adhikari, M. R. & Adhikari, A. (2005) Textbook of Linear Algebra: Introduction to Modern Algebra, Allied Publishers, Mumbai.
[3] Almendral, J. A., Leyva, I., Li, D., Sendiña-Nadal, I., Havlin, S. & Boccaletti, S. (2010) Dynamics of overlapping structures in modular networks. Phys. Rev. E 82, 016115.
[4] Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. (2008) Synchronization in complex networks. Phys. Rep. 469, 93.
[5] Atay, F. M., Jost, J. & Wende, A. (2004) Delays, connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett. 92, 144101.
[6] Albert, R. & Barabási, A. L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47.
[7] Beckers, J. M. (1992) Analytical linear numerical stability conditions for the anisotropic three-dimensional advection-diffusion equation. SIAM J. Numer. Anal. 29, 701.
[8] Boccaletti, S. (2008) The Synchronized Dynamics of Complex Systems, Elsevier, Amsterdam.
[9] Cai, J., Wu, X. & Chen, S. (2007) Chaos synchronization criteria and costs of sinusoidally coupled horizontal platform systems. Math. Probl. Eng. 2007, 86852.
[10] Chavez, M., Hwang, D. U., Amann, A., Hentschel, H. G. E. & Boccaletti, S. (2005) Synchronization is enhanced in weighted complex networks. Phys. Rev. Lett. 94, 218701.
[11] Deffuant, G. (2006) Comparing extremism propagation patterns in continuous opinion models. JASS 9 (3), 8.
[12] Do, A. L., Rudolf, L. & Gross, T. (2010) Patterns of cooperation: fairness and coordination in networks of interacting agents. New J. Phys. 12, 063023.
[13] Do, A. L., Boccaletti, S. & Gross, T. (2012) Graphical notation reveals topological stability criteria for collective dynamics in complex networks. Phys. Rev. Lett 108, 194102.
[14] Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. (2008) Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275.
[15] Eckhardt, B., Faisst, H., Schmiegel, A. & Schneider, T. M. (2008) Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc. A 336(1868), 1297.
[16] Ermentrout, G. B. (1992) Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J. Appl. Math. 52, 1665; Izhikevich, E. M. (1999) Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory. IEEE Trans. Neural Netw. 10, 508.
[17] Eskin, G., Ralston, J. & Trubowitz, E. (1984) On isospectral periodic potentials in n .II. Comm. Pure Appl. Math. 37, 715.
[18] Fortunato, S. (2010) Community detection in graphs. Phys. Rep. 486, 75.
[19] Gross, T. & Blasius, B. (2008) Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259; Gross, T. and Sayama, H. (Eds.) (2009) Adaptive Networks: Theory, Models and Applications, Springer, Heidelberg.
[20] Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. (2009) Generalized models reveal stabilizing factors in food webs. Science 325, 747.
[21] Ito, J. & Kaneko, K. (2001) Spontaneous structure formation in a network of chaotic units with variable connection strengths Phys. Rev. Lett. 88, 028701.
[22] Kawamura, Y., Nakao, H., Arai, K., Kori, H. & Kuramoto, Y. (2010) Phase synchronization between collective rhythms of globally coupled oscillator groups: Noiseless nonidentical case Chaos 20, 043110.
[23] Kirchhoff, G. (1847) Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497.
[24] Kevrekidis, I. G., Gear, C. W. & Hummer, G. (2004) Equation-free: The computer-aided analysis of complex multiscale systems. AIChE J. 50, 1346.
[25] Kuramoto, Y. (1975) Lecture Notes in Physics, Vol. 39, Springer, New York.
[26] Laradji, M., Shi, A. C., Desai, R. C. & Noolandi, J. (1997) Stability of ordered phases in diblock copolymer melts. Phys. Rev. Lett. 78, 2577.
[27] Leibold, M. A. et al. (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601.
[28] Li, M. Y. & Shuai, Z. (2010) Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ. 248, 1.
[29] Liao, X. & Yu, P. (2008) Absolute Stability of Nonlinear Control Systems, Springer, Netherlands.
[30] Lodato, I., Boccaletti, S. & Latora, V. (2007) Synchronization properties of network motifs. EPL 78, 28001.
[31] Mirollo, R. E. & Strogatz, S. H. (2005) The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D 205, 249.
[32] Mori, F. (2010) Necessary condition for frequency synchronization in network structures. Phys. Rev. Lett. 104, 108701.
[33] Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Rev. 45, 167.
[34] Newman, M. E. J., Barabási, A. L. & Watts, D. J. (2006) The Structure and Dynamics of Networks, Princeton University Press, Princeton, NJ.
[35] Nishikawa, T. & Motter, A. E. (2006) Synchronization is optimal in non-diagonizable networks. Phys. Rev. E 73, 065106.
[36] Nishikawa, T. & Motter, A. E. (2010) Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions. PNAS 107, 10342.
[37] Pecora, L. M. & Carroll, T. L. (1998) Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109.
[38] Pikovsky, A., Rosenblum, M. & Kurths, J. (2001) Synchronization, Cambridge University Press, Cambridge.
[39] Schnakenberg, J. (1976) Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571.
[40] Sendiña-Nadal, I., Buldú, J. M., Leyva, I. & Boccaletti, S. (2008) Phase Locking Induces Scale-Free Topologies in Networks of Coupled Oscillators. PLoS ONE 3, e2644.
[41] Shirokov, A. M., Smirnova, N. A. & Smirnov, Y. F. (1998) Parameter symmetry of the interacting boson model. Phys. Lett. B 434, 237.
[42] Soldatova, E. D. (2006) Stability conditions for the basic thermodynamic potentials and the substantiation of the phase diagram J. Mol. Liq. 127, 99.
[43] Valladares, D. L., Boccaletti, S., Feudel, F. & Kurths, J. (2002) Collective phase locked states in a chain of coupled chaotic oscillators. Phys. Rev. E 65, 055208.
[44] Wu, C. W. (2007) Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific, Singapore.
[45] Zhang, F. (2011) Matrix Theory: Basic Results and Techniques, Springer, New York.
[46] Zhou, C. & Kurths, J. (2006) Dynamical weights and enhanced synchronization in adaptive complex networks. Phys. Rev. Lett. 96, 164102.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 80 *
Loading metrics...

Abstract views

Total abstract views: 380 *
Loading metrics...

* Views captured on Cambridge Core between 2nd November 2016 - 22nd July 2018. This data will be updated every 24 hours.