Skip to main content Accessibility help

Brain Computer Interfaces for Silent Speech

  • Yousef Rezaei Tabar (a1) and Ugur Halici (a2)


Brain Computer Interface (BCI) systems provide control of external devices by using only brain activity. In recent years, there has been a great interest in developing BCI systems for different applications. These systems are capable of solving daily life problems for both healthy and disabled people. One of the most important applications of BCI is to provide communication for disabled people that are totally paralysed. In this paper, different parts of a BCI system and different methods used in each part are reviewed. Neuroimaging devices, with an emphasis on EEG (electroencephalography), are presented and brain activities as well as signal processing methods used in EEG-based BCIs are explained in detail. Current methods and paradigms in BCI based speech communication are considered.



Hide All
1. Graimann, B., Allison, B. and Pfurtscheller, G. (2010) Brain–computer interfaces: a gentle introduction. Brain-Computer Interfaces (Berlin Heidelberg: Springer), pp. 1–27.
2. Sellers, E.W., Vaughan, T.M. and Wolpaw, J.R. (2010) A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis, 11(5), pp. 449455.
3. Rebsamen, B., Guan, C., Zhang, H., Wang, C., Teo, C., Ang, M.H. Jr and Burdet, E. (2010) A brain controlled wheelchair to navigate in familiar environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(6), pp. 590598.
4. Krepki, R., Blankertz, B., Curio, G. and Muller, K.-R. (2007) The Berlin Brain-Computer Interface (BBCI) towards a new communication channel for online control in gaming applications. Multimedia Tools and Applications, 33, pp. 7390.
5. Farwell, L.A. and Donchin, E. (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), pp. 510523.
6. Townsend, G., LaPallo, B.K., Boulay, C.B., Krusienski, D.J., Frye, G.E., Hauser, C.K., Schwartz, N.E., Vaughan, T.M., Wolpaw, J.R. and Sellers, E.W. (2010) A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clinical Neurophysiology, 121, pp. 11091120.
7. Ahi, S.T., Kambara, H. and Koike, Y. (2011) A dictionary-driven P300 speller with a modified interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19, pp. 614.
8. Takano, K., Komatsu, T., Hata, N., Nakajima, Y. and Kansaku, K. (2009) Visual stimuli for the P300 brain–computer interface: a comparison of white/gray and green/blue flicker matrices. Clinical Neurophysiology, 120, pp. 15621566.
9. Li, Y., Nam, C.S., Shadden, B.B. and Johnson, S.L. (2011) A P300-based brain–computer interface: effects of interface type and screen size. International Journal of Human–Computer Interactface, 27(1), pp. 5268.
10. Cheng, M., Gao, X., Gao, S. and Xu, D. (2002) Design and implementation of a brain-computer interface with high transfer rates. IEEE Transactions on Biomedical Engineering, 49(10), pp. 11811186.
11. Trejo, L.J., Rosipal, R. and Matthews, B. (2006) Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), pp. 225229.
12. Allison, B.Z., McFarland, D.J., Schalk, G., Zheng, S.D., Jackson, M.M. and Wolpaw, J.R. (2008) Towards an independent brain - computer interface using steady state visual evoked potentials. Clinical Neurophysiology :Official Journal of the International Federation of Clinical Neurophysiology, 119(2), pp. 399408.
13. Segers, H., Combaz, A., Manyakov, N.V., Chumerin, N., Vanderperren, K., Van Huffel, S. and Van Hulle, M.M. (2011) Steady State Visual Evoked Potential (SSVEP)-based brain spelling system with synchronous and asynchronous typing modes, In 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2011), Aalborg, Denmark, 1417, pp. 164–167.
14. Obermaier, B., Muller, G.R. and Pfurtscheller, G. (2003) Virtual keyboard controlled by spontaneous EEG activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11, pp. 422426.
15. Scherer, R., Müller, G.R., Neuper, C., Graimann, B. and Pfurtscheller, G. (2004) An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Transactions on Biomedical Engineering, 51(6), pp. 979984.
16. Blankertz, B., Müller, K.R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlögl, A., Pfurtscheller, G., Millan, J.R., Schröder, M. and Birbaumer, N. (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), pp. 153159.
17. Nicolas-Alonso, L.F. and Gomez-Gil, J. (2012) Brain computer interfaces, a review. Sensors, 12(2), pp. 12111279.
18. Suner, S., Fellows, M.R., Vargas-Irwin, C., Nakata, G.K. and Donoghue, J.P. (2005) Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, pp. 524541.
19. Freeman, W.J., Holmes, M.D., Burke, B.C. and Vanhatalo, S. (2003) Spatial spectra of scalp EEG and EMG from awake humans. Clinical Neurophysiology, 114, pp. 10531068.
20. Levine, S.P., Huggins, J.E., BeMent, S.L., Kushwaha, R.K., Schuh, L.A., Passaro, E.A., Rohde, M.M. and Ross, D.A. (1999) Identification of electrocorticogram patterns as the basis for a direct brain interface. Journal of Clinical Neurophysiology, 16, pp. 439447.
21. Kennedy, P.R., Kirby, M.T., Moore, M.M., King, B. and Mallory, A. (2004) Computer control using human intracortical local field potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12, pp. 339344.
22. Wolpaw, J.R., Loeb, G.E., Allison, B.Z., Donchin, E., do Nascimento, O.F., Heetderks, W.J., Nijboer, F., Shain, W.G. and Turner, J.N., BCI Meeting (2005) workshop on signals and recording methods. IEEE Transactions on Neural Systems and Rehabilitation and Engineering, 14, pp. 138141.
23. Bauernfeind, G., Leeb, R., Wriessnegger, S.C. and Pfurtscheller, G. (2008) Development, set-up and first results for a one-channel near-infrared spectroscopy system. Biomedizinische Technik, 53, pp. 3643.
24. Ward, B.D. and Mazaheri, Y. (2008) Information transfer rate in fMRI experiments measured using mutual information theory. Journal of Neuroscience Methods, 167, pp. 2230.
25. Coyle, S.M., Ward, T.E. and Markham, C.M. (2007) Brain-computer interface using a simplified functional near-infrared spectroscopy system. Journal of Neural Engineering, 4(3), p. 219.
26. Power, S.D., Kushki, A. and Chau, T. (2011) Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. Journal of Neural Engineering, 8, 066004.
27. Lal, T.N., Schröder, M., Hill, N.J., Preissl, H., Hinterberger, T., Mellinger, J., Bogdan, M., Rosenstiel, W., Hofmann, T., Birbaumer, N. and Schölkopf, B. (2005) A Brain Computer Interface with Online Feedback Based on Magnetoencephalography. In Proceedings of the 22nd International Conference on Machine Learning (ICML’ 05), Bonn, Germany, pp. 7–11, 465–472.
28. Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N. and Kübler, A. (2007) An MEG-based brain-computer interface (BCI). Neuroimage, 36, pp. 581593.
29. Jinyin, Z., Sudre, G., Xin, L., Wei, W., Weber, D.J. and Bagic, A. (2011) Clustering linear discriminant analysis for MEG-Based brain computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19, pp. 221231.
30. Citi, L., Poli, R., Cinel, C. and Sepulveda, F. (2008) P300-based BCI mouse with genetically-optimized analogue control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16.
31. Bell, C.J., Shenoy, P., Chalodhorn, R. and Rao, R.P.N. (2008) Control of a humanoid robot by a noninvasive brain-computer interface in humans. Journal of Neural Engineering, 5, pp. 214220.
32. Herrmann, C.S. (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research, 137(3), pp. 346353.
33. Hinterberger, T., Schmidt, S., Neumann, N., Mellinger, J., Blankertz, B., Curio, G. and Birbaumer, N. (2004) Brain-computer communication and slow cortical potentials. IEEE Transactions on Biomedical Engineering, 51, pp. 10111018.
34. Iversen, I.H., Ghanayim, N., Kübler, A., Neumann, N., Birbaumer, N. and Kaiser, J. (2008) A brain-computer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis. Clinical Neurophysiology, 119, pp. 22142223.
35. Pfurtscheller, G. and da Silva, F.H.L. (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), pp. 18421857.
36. Schlögl, A., Lee, F., Bischof, H. and Pfurtscheller, G. (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. Journal of Neural Engineering, 2, pp. L14L22.
37. Pfurtscheller, G., Brunner, C., Schlogl, A. and da Silva, F.H.L. (2006) Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31, pp. 153159.
38. Fabiani, G.E., McFarland, D.J., Wolpaw, J.R. and Pfurtscheller, G. (2004) Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12, pp. 331338.
39. Long, J.Y., Li, Y.Q., Wang, H.T., Yu, T.Y., Pan, J.H. and Li, F. (2012) A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), pp. 720729.
40. Horki, P., Solis-Escalante, T., Neuper, C. and Müller-Putz, G. (2011) Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Medical and Biological Engineering and Computing, 49(5), pp. 567577.
41. Al-ani, T. and Trad, D. (2010) signal processing and classification approaches for brain-computer interface. Intelligent and Biosensors. V.S. Somerset, (Ed.), (InTech), pp. 25–66.
42. Jolliffe, I. (2002) Principal Component Analysis (New York: Springer-Verlag), DOI: 10.1007/b98835.
43. Comon, P. (1994) Independent component analysis: a new concept? Signal Processing, 36(3), pp. 287314.
44. An, X., Kuang, D., Guo, X., Zhao, Y. and He, L. (2014) A deep learning method for classification of EEG data based on motor imagery. Intelligent Computing in Bioinformatics, pp. 203210.
45. Ince, N.F., Arica, S. and Tewfik, A. (2006) Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time–frequency tilings. Journal of Neural Engineering, 3, 3.
46. Kaiser, V., Bauernfeind, G., Kreilinger, A., Kaufmann, T., Kübler, A., Neuper, C. and Müller-Putz, G.R. (2014) Cortical effects of user training in a motor imagery based brain computer interface measured by fNIRS and EEG. NeuroImage, 85(1), pp. 432444.
47. Hwang, H.J., Kwon, K. and Im, C.H. (2009) Neurofeedback-based motor imagery training for brain-computer interface (BCI). Journal of Neuroscience Methods, 179(1), pp. 150156.
48. Boye, A.T., Kristiansen, U.Q., Billinger, M., do Nascimento, O.F. and Farina, D. (2008) Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis. Biomedical Signal Process . Control, 3, pp. 300304.
49. Lin, C.J. and Hsieh, M.H. (2009) Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing, 72, pp. 11211130.
50. Yıldırım, A. and Halici, U. (2013) Analysis of dimension reduction by PCA and AdaBoost on spelling paradigm EEG data Sixth International Conference on Biomedical Engineering and Informatics.
51. Talukdar, M.T., Sakib, S.K., Pathan, N.S. and Fattah, S.A. (2014) Motor imagery EEG signal classification scheme based on autoregressive reflection coefficients. Informatics, Electronics & Vision (ICIEV), International Conference on. IEEE.
52. Te-Won, L., Lewicki, M.S., Girolami, M. and Sejnowski, T.J. (1999) Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters, 6, pp. 8790.
53. Gao, J., Yang, Y., Lin, P., Wang, P. and Zheng, C. (2010) Automatic removal of eye-movement and blink artifacts from EEG signals. Brain Topography, 23, pp. 105114.
54. Erfanian, A. and Erfani, A. (2004) ICA-based classification scheme for EEG-based brain-computer interface: the role of mental practice and concentration skills. In Engineering in Medicine and Biology Society, IEMBS'04. 26th Annual International Conference of the IEEE, 1, pp. 235–238.
55. Ramoser, H., Muller-Gerking, J. and Pfurtscheller, G. (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), pp. 441446.
56. Grosse-Wentrup, M. and Buss, M. (2008) Multiclass common spatial patterns and information theoretic feature extraction. IEEE Transactions on Biomedical Engineering, 55(8), pp. 19912000.
57. Ang, K.K., Chin, Z.Y., Zhang, H. and Guan, C. (2008) Filter bank common spatial pattern (FBCSP) in brain-computer interface. In Neural Networks, IJCNN. IEEE World Congress on Computational Intelligence, pp. 2390-2397.
58. Holland, J.H. (1975) Adaption in Natural and Artificial Systems (Cambridge, MA: MIT Press).
59. Corralejo, R., Hornero, R. and Alvarez, D. (2011) Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface. Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE.
60. Seno, D.B., Matteucci, M. and Mainardi, L. (2008) A genetic algorithm for automatic feature extraction in P300 detection. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN’08), Hong Kong, China, pp. 3145–3152.
61. Freund, R.E. and Schapire, Y. (1997) A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), pp. 119139.
62. Boostani, R. and Moradi, M.H. (2004) A new approach in the BCI research based on fractal dimension as feature and Adaboost as classifier. Journal of Neural Engineering, 1(4), p. 212.
63. Fix, E. and Hodges, J.L. (1951) Discriminatory analysis-nonparametric discrimination: consistency properties. Technical Report 4. USAF School of Aviation Medicine, Randolph Field, TX.
64. Fukunaga, K. (1972) Introduction to Statistical Pattern Recognition (Oxford, UK: Clarendon).
65. Hoffmann, U., Vesin, J.M., Ebrahimi, T. and Diserens, K. (2008) An efficient P300-based brain-computer interface for disabled subjects. Journal of Neuroscience Methods, 167, pp. 115125.
66. Garrett, D., Peterson, D.A., Anderson, C.W. and Thaut, M.H. (2003) Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Transactions of Neural Systems and Rehabilitation Engineering, 11, pp. 141144.
67. Cortes, C. and Vapnik, V. (1995) Support-vector networks. Machine Learning, 20, 273297.
68. Burges, C.J.C. (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, pp. 121167.
69. Blankertz, B., Curio, G. and Muller, K.R. (2002) Classifying single trial EEG: towards brain computer interfacing. Advances in Neural Information Processing Systems, 14, pp. 157164.
70. Rakotomamonjy, A. and Guigue, V. (2008) BCI 2008, competition III: data set II—Ensemble of SVMs for BCI p300 speller. IEEE Transactions on Biomedical Engineering, 55(3), pp. 11471154.
71. Jensen, F.V. (2001) Bayesian Networks and Decision Graphs (Berlin: Springer).
72. Moon, T.K. (1996) The expectation-maximization algorithm. Signal Processing Magazine, IEEE, 13(6), pp. 4760.
73. Rabiner, L.R. and Juang, B.H. (1986) An introduction to hidden Markov models. IEEE ASSP Magazine, pp. 416.
74. Obermaier, B., Guger, C., Neuper, C. and Pfurtscheller, G. (2001) Hidden Markov models for online classification of single trial EEG data. Pattern Recognition Letters, 22(12), pp. 12991309.
75. Zhong, S. and Gosh, J. (2002) HMMs and coupled HMMs for multi-channel EEG classification. Proceedings of the IEEE International Joint Conference on. Neural Networks, 2, pp. 11541159.
76. Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning internal representations by error propagation. Parallel Distributed Processing, 1, pp. 151193.
77. Masic, N. and Pfurtscheller, G. (1993) Neural network based classification of single-trial EEG data. Artificial Intelligence in Medicine, 5(6), pp. 503513.
78. Anderson, C.W., Devulapalli, S.V. and Stolz, E.A. (1995) Determining mental state from EEG signals using parallel implementations of neural networks. Proceedings of the IEEE Workshop on Neural Networks for Signal in Processing, pp. 475483.
79. Felzer, T. and Freisieben, B. (2003) Analyzing EEG signals using the probability estimating guarded neural classifier. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(4), pp. 361371.
80. Cecotti, H. and Graser, A. (2008) Time delay neural network with Fourier transform for multiple channel detection of steady-state visual evoked potential for brain-computer interfaces. Proceedings of the European Signal Processing Conference.
81. Haselsteiner, E. and Pfurtscheller, G. (2000) Using time dependent neural networks for EEG classification. IEEE Transactions on Rehabilitation Engineering, 8(4), pp. 457463.
82. Masic, N., Pfurtscheller, G. and Flotzinger, D. (2008) Neural network-based predictions of hand movements using simulated and real EEG data. Neurocomputing, 7(3), pp. 259274.
83. Hamedi, M., Salleh, S.H., Noor, A.M. and Mohammad-Rezazadeh, I. (2014) Neural network-based three-class motor imagery classification using time-domain features for BCI applications. Region 10 Symposium.
84. LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) Gradient-based learning applied to document recognition. Proceedings of IEEE, 86(11), pp. 22782324.
85. Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H. (2007) Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems 19 (NIPS’06), pp. 153160.
86. Hinton, G.E. (2002) Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), pp. 17111800.
87. Cecotti, H. and Axel, G. (2011) Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3), pp. 433445.
88. Junhua, L. and Cichocki, A. (2014) Deep learning of multifractal attributes from motor imagery induced EEG. Neural Information Processing (Springer International Publishing).
89. Rezaeitabar, Y. and Halici, U. (2016) A novel deep learning approach for classification of EEG motor imagery signals. Journal of Neural Engineering, in press.
90. Delorme, A. and Makeig, S. (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, pp. 921.
91. Kothe, C.A. and Makeig, S. (2013) BCILAB: a platform for brain–computer interface development. Journal of Neural Engineering, 10(5), 056014.
92. Vidaurre, C., Sander, T.H. and Schlögl, A. (2011) BioSig: the free and open source software library for biomedical signal processing. Computational Intelligence and Neuroscience, 935364. doi: 10.1155/2011/935364. pmid:21437227.
93. Brainard, D.H. (1997) The psychophysics toolbox. Spatial Vision, 10, pp. 433436.
94. Blankertz, B. (2003) BCI Competition II–P300 speller dataset webpage. Online:,
95. Blankertz, B. BCI Competition III– P300 speller dataset webpage. Online:, Documentation:, 2005, Retrieved 20/11/2010.
96. Blankertz, B. (2008) BCI Competition IV, Fraunhofer FIRST (IDA), http://ida.
97. Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V. and Lécuyer, A. (2010) OpenViBE: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence: Teleoperators and Virtual Environments, 19(1), pp. 3553.
98. Blankertz, B., Dornhege, G., Krauledat, M., Schroder, M., Williamson, J., Murray-Smith, R. and Müller, K.-R. (2006) The Berlin brain-computer interface presents the novel mental typewriter Hex-o-Spell. In Proceedings of the Third International Brain Computer Interface Workshop and Training Course, Graz, Austria, pp. 108–109.
99. Cecotti, H. (2011) Spelling with non-invasive Brain–Computer Interfaces – current and future trends. Journal of Physiology-Paris, 105(1–3), pp. 106114.
100. Mora-Cortes, A., Manyakov, N.V., Chumerin, N. and Van Hulle, M.M. (2014) Language model applications to spelling with Brain-Computer Interfaces. Sensors (Basel), 14(4), pp. 59675993.
101. Jia, C., Gao, X., Hong, B. and Gao, S. (2011) Frequency and phase mixed coding in SSVEP-based brain-computer interface. IEEE Transactions on Biomedical Engineering, 58, pp. 200206.
102. D’albis, T., Blatt, R., Tedesco, R., Sbattella, L. and Matteucci, M. (2012) A predictive speller controlled by a brain-computer interface based on motor imagery. ACM Transactions on Computer–Human Interactions, 19, pp. 125.
103. Palaniappan, R., Paramesran, R., Nishida, S. and Saiwaki, N. (2002) A new brain-computer interface design using fuzzy ARTMAP. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(3), pp. 140148.
104. Nicolaou, N. and Georgiou, J. (2008) Towards a Morse code-based non-invasive thought-to-speech converter. In BIOSTEC (Selected Papers), pp. 123135.
105. Gelenbe, E., Feng, Y. and Krishnan, K.R.R. (1996) Neural network methods for volumetric magnetic resonance imaging of the human brain. Proceedings of the IEEE, 84(10), pp. 14881496.
106. Gelenbe, E. and Fourneau, J.M. (1999) Random neural networks with multiple classes of signals. Neural Computation, 11(4), pp. 953963.
107. Gelenbe, E., Mao, Z.-H. and Li, Y.-D. (1999) Function approximation with spiked random networks. IEEE Transactions on Neural Networks, 10(1), pp. 39.
108. Gelenbe, E. and Timotheou, S. (2008) Random neural networks with synchronized interactions. Neural Computation, 20(9), pp. 23082324.
109. Keirn, Z.A. and Aunon, J.I. (1990) A new mode of communication between man and his surroundings. IEEE Transactions on Biomedical Engineering, 37, 12091214.
110. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G. and Vaughan, T.M. (2002) Brain computer interfaces for communication and control. Clinical Neurophysiology, 113, pp. 767791.
111. Ryan, D.B., Frye, G.E., Townsend, G., Berry, D.R., Mesa, G.S., Gates, N.A. and Sellers, E.W. (2010) Predictive spelling with a P300-based brain-computer interface: increasing the rate of communication. International Journal of Human–Computer Interactions, 27, pp. 6984.
112. Gelenbe, E. and Yin, Y. (2016) Deep learning with random neural networks. IJCNN 2016, IEEE World Congress on Computational Intelligence, Vancouver, BC, July 2016.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed