Skip to main content
×
Home

Complexity and Nonlinear Dynamics in Psychotherapy

  • Günter Schiepek (a1)
Abstract

Human life changes with time. It seems therefore obvious that most of the phenomena that psychology and psychotherapy are concerned with are dynamic in nature. For human development processes, human change and learning processes, the dynamics and prognosis of mental disorders, problems manifesting in social systems such as couples, families, teams, or the question of how psychotherapy works, self-organization is ubiquitous. In the context of self-organization, complexity is a quality of changing patterns and patterns of change, produced by nonlinear coupled systems.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Complexity and Nonlinear Dynamics in Psychotherapy
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Complexity and Nonlinear Dynamics in Psychotherapy
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Complexity and Nonlinear Dynamics in Psychotherapy
      Available formats
      ×
Copyright
References
Hide All
1.Wampold B. E. (2001) The Great Psychotherapy Debate. Models, Methods, and Findings (Mahwah NJ: Lawrence Erlbaum Associates).
2.Popper K. (1987) Logik der Forschung (Tübingen: JCB Mohr) (7. Aufl.).
3.Beutler L. E., Malik M., Alimohamed S., Harwood T. M., Talebi H., Noble F. and Wong E. (2004) Therapist variables. In: M. J. Lambert (ed.) Bergin and Garfield’s Handbook of Psychotherapy and Behavior Change (New York: Wiley), pp. 227306.
4.Shapiro D. A., Harper H., Startup M., Reynolds S., Bird D. and Suokas A. (1994) The high-water mark of the drug metaphor. A meta-analytic critique of process-outcome research. In: R. L. Russell (ed.) Reassessing Psychotherapy Research (New York: Guilford Press), pp. 135.
5.Lambert M. J. and Ogles B. M. (2004) The efficacy and effectiveness of psychotherapy. In: M. J. Lambert (ed.) Bergin and Garfield’s Handbook of Psychotherapy and Behavior Change (New York: Wiley), pp. 139193.
6.Gaffan E. A., Tsaousis I. and Kemp-Wheeler S. M. (1995) Researcher allegiance and meta-analysis: the case of cognitive therapy for depression. J. Consult. Clin. Psychol., 63, 966980.
7.Luborsky L., Diguer L., Seligman D. A., Rosenthal R., Krause E. D., Johnson S., Halperin G., Bishop M., Berman J. S. and Schweizer E. (1999) The researcher’s own allegiances: A ‘wild card’ in the comparisons of treatment efficacy. Clin. Psychol. Sci. Practice, 6, 95106.
8.Shoham V. and Rohrbaugh M. J. (1999) Beyond allegiance to comparative outcome studies. Clin. Psychol. Sci. Pract., 6, 120123.
9.Smith M. L., Glass G. V. and Miller T. I. (1980) The Benefits of Psychotherapy (Baltimore MD: John Hopkins University Press).
10.Wampold B. E., Mondin G. W., Moody M., Stich F., Benson K. and Ahn H. (1997) A meta-analysis of outcome studies comparing bona fide psychotherapies: empirically, ‘All must have prizes’. Psychol. Bull., 122, 203215.
11.Haas E., Hill R., Lambert M. J. and Morrell B. (2002) Do early responders to psychotherapy maintain treatment gains? J. Clin. Psychol., 58, 11571172.
12.Hayes A. M. and Strauss J. L. (1998) Dynamic systems theory as a paradigm for the study of change in psychotherapy: an application to cognitive therapy for depression. J. Consult. Clin. Psychol., 66, 939947.
13.Hayes A. M., Feldman G. C., Beevers C. G., Laurenceau J. P., Cardaciotto L. A. and Lewis-Smith J. (2007) Discontinuities and cognitive changes in an exposure-based cognitive therapy for depression. J. Consult. Clin. Psychology, 75, 409421.
14.Hayes A. M., Laurenceau J. P., Feldman G. C., Strauss J. L. and Cardaciotto L. A. (2007) Change is not always linear: The study of nonlinear and discontinuous patterns of change in psychotherapy. Clin. Psychol. Rev., 27, 715723.
15.Ilardi S. S. and Craighead W. E. (1994) The role of non-specific factors in cognitive-behavior therapy for depression. Clin. Psychol. Res. Pract., 1, 138156.
16.Wilson G. T. (1998) Manual-based treatment and clinical practice. Clin. Psychol. Sci. Pract., 5, 363375.
17.Jacobson N. S., Dobson K. S., Truax P. A., Addis M. E., Koerner K., Gollan J. K., Gortner E. and Prince S. E. (1996) A component analysis of cognitive-behavioral treatment for depression. J. Consult. Clin. Psychol., 64, 295304.
18.Ahn H. and Wampold B. E. (2001) Where oh where are the specific ingredients? A meta-analysis of component studies in counselling and psychotherapy. J. Counsel. Psychol., 48, 251257.
19.Gunzelmann T., Schiepek G. and Reinecker H. (1987) Laienhelfer in der psychosozialen Versorgung: Meta-Analysen zur differentiellen Effektivität von Laien und professionellen Helfern. Gruppendynamik, 18, 361384.
20.Hattie J. A., Sharpley C. F. and Rogers H. F. (1984) Comparative effectiveness of professional and paraprofessional helpers. Psychol. Bull., 95, 534541.
21.Anderson T. (1999) Specifying non-‘specifics’ in therapists: the effect of facilitative interpersonal skills in outcome and alliance formation. Paper presented at the 30th annual meeting of the International Society of Psychotherapy Research, Braga, Portugal.
22.Grissom R. J. (1996) The magical number .7 +−.2: Meta-meta-analysis of the probability of superior outcome in comparisons involving therapy, placebo, and control. J. Consult. Clin. Psychol., 64, 973982.
23.Lipsey M. W. and Wilson D. B. (1993) The efficacy of psychological, educational, and behavioural treatment: Confirmation from meta-analysis. Am. Psychologist, 48, 11811209.
24.Shadish W. R., Navarro A. M., Matt G. E. and Phillips G. (2000) The effects of psychological therapies under clinically representative conditions: A meta-analysis. Psychol. Bull., 126, 512529.
25.Ogles B. M., Anderson T. and Lunnen K. M. (1999) The contribution of models and techniques to therapeutic efficacy: contradictions between professional trends and clinical research. In: M. A. Hubble, B. L. Duncan and S. E. Miller (eds), The Heart and Soul of Change: What Works in Therapy (Washington DC: APA), pp. 201225.
26.Henry W. P., Schacht T. E., Strupp H. H., Butler S. F. and Binder J. (1993) Effects of training in time-limited dynamic psychotherapy: mediators of therapists’ responses to training. J. Consult. Clin. Psychol., 61, 441447.
27.Henry W. P., Strupp H. H., Butler S. F., Schacht T. E. and Binder J. (1993) Effects of training in time-limited dynamic psychotherapy: changes in therapist’s behavior. J. Consult. Clin. Psychol., 61, 434440.
28.Grencavage L. M. and Norcross J. C. (1990) Where are the commonalities among the therapeutic common factors? Professional Psychol. Res. Practice, 21, 372378.
29.Weinberger J. (1995) Common factors aren’t so common: the common factors dilemma. Clin. Psychol. Sci. Pract., 2, 4569.
30.Clarkin J. F. and Levy K. N. (2004) The influence of client variables on psychotherapy. In: M. J. Lambert (ed.) Bergin and Garfield’s Handbook of Psychotherapy and Behavior Change (New York: Wiley), pp. 194226.
31.Orlinsky D. E. and Howard K. J. (1986) Process and outcome in psychotherapy. In: S. L. Garfield and A. E. Bergin (eds) Handbook of Psychotherapy and Behavior Change, 3rd edn (New York: Wiley), pp. 311381.
32.Orlinsky D. E., Ronnestad M. H. and Willutzki U. (2004) Fifty years of psychotherapy process-outcome research: Continuity and change. In: M. J. Lambert (ed.) Bergin and Garfield’s Handbook of Psychotherapy and Behavior Change (New York: Wiley), pp. 307389.
33.Haken H. and Schiepek G. (2006) Synergetik in der Psychologie. Selbstorganisation verstehen und gestalten (Göttingen: Hogrefe).
34.Perlitz V., Cotuk B., Lambertz M., Grebe R., Schiepek G., Petzold E. R., Schmid-Schönbein H. and Flatten G. (2004) Coordination dynamics of circulatory and respiratory rhythms during psychomotor relaxation. Autonomic. Neurosci., 115, 8293.
35.Mainzer K. (ed.) (1999) Komplexe Systeme in Natur und Gesellschaft. Komplexitätsforschung in Deutschland auf dem Weg ins nächste Jahrhundert (Berlin: Springer).
36.Mainzer K. (2007) Thinking in Complexity. The Complex Dynamics of Matter, Mind, and Mankind, 4th edn (Berlin: Springer).
37.Freeman W. J. (1999) How Brains Make Up Their Minds (London: Weidenfeld & Nicolson).
38.Haken H. (2002) Brain Dynamics (Berlin: Springer).
39.Kelso J. A. S. (1995) Dynamic Patterns. The Self-Organization of Brain and Behavior (Cambridge, MA: MIT Press).
40.Osipov G. V., Kurths J. and Zhou C. (2007) Synchronization in Oscillatory Networks (Berlin: Springer).
41.Singer W. and Gray C. M. (1995) Visual feature integration and the temporal correlation hypothesis. Ann. Rev. Neurosci., 18, 555586.
42.Popovych O. V., Hauptmann C. and Tass P. A. (2006) Control of neural synchrony by nonlinear delayed feedback. Biol. Cybern., 95, 6985.
43.Villmann T., Liebers C., Bergmann B., Gumz A. and Geyer M. (in press) Investigation of psycho-physiological interactions between patient and therapist during a psychodynamic therapy and their relation to speech in terms of entropy analysis using a neural network approach. New Ideas in Psychology.
44.Mergenthaler E. (1998) Cycles of emotion-abstraction patterns: A way of practice oriented process research? The British Psychological Society – Psychotherapy Section Newsletter, 24, 1629.
45.Rockstroh B., Watzl H., Kowalik Z. J., Cohen R., Sterr A., Müller M. and Elbert T. (1997) Dynamical aspects of the EEG in different psychopathological states in an interview situation. A pilot study. Schizophrenia Res., 28, 7785.
46.Kowalik Z. J., Schiepek G., Kumpf K., Roberts L. E. and Elbert T. (1997) Psychotherapy as a chaotic process II: The application of nonlinear analysis methods on quasi time series of the client-therapist-interaction: A nonstationary approach. Psychother. Res., 7, 197218.
47.Schiepek G., Kowalik Z. J., Schütz A., Köhler M., Richter K., Strunk G., Mühlnickel W. and Elbert T. (1997) Psychotherapy as a chaotic process I. Coding the client-therapist-interaction by means of sequential plan analysis and the search for chaos: A stationary approach. Psychother. Res., 7, 173194.
48.Strunk G. and Schiepek G. (2006) Systemische Psychologie. Einführung in die komplexen Grundlagen menschlichen Verhaltens (Heidelberg: Spektrum Akademischer Verlag).
49.Caspar F. (1996) Beziehungen und Probleme verstehen. Eine Einführung in die psychotherapeutische Plananalyse (Bern: Huber).
50.Bak P., Chen K. and Creutz M. (1989) Self-organized criticality and the ‘Game of Life’. Nature, 342, 780782.
51.Rapp P. E., Albano M. E., Zimmerman I. D. and Jiménez-Montaño M. A. (1994) Phase-randomized surrogates can produce spurious identifications of non-random structure. Physical Letters A, 192, 2733.
52.Strunk G. (2004) Organisierte Komplexität. Mikroprozess-Analysen der Interaktionsdynamik zweier Psychotherapien mit den Methoden der nichtlinearen Zeitreihenanalyse. Dissertation, Universität Bamberg.
53.Skinner J. E., Molnar M. and Tomberg C. (1994) The point correlation dimension: Performance with nonstationary surrogate data and noise. Int. Physiol. Behav. Sci., 29, 217234.
54.Rosenstein M. T., Collins J. J. and de Luca C. J. (1993) A practical method for calculating Largest Lyapunov Exponents from small data sets. Physica D, 65, 117134.
55.Vandenhouten R. (1998) Analyse instationärer Zeitreihen komplexer Systeme und Anwendungen in der Physiologie (Achen: Shaker Verlag).
56.Lambertz M., Vandenhouten R. and Langhorst P. (2003) Transiente Kopplungen von Hirnstammneuronen mit Atmung, Herzkreislaufsystem und EEG: Ihre Bedeutung für Ordnungsübergänge in der Psychotherapie. In: G. Schiepek (ed.) Neurobiologie der Psychotherapie (Stuttgart: Schattauer), pp. 302324.
57.The measure of dynamic complexity combines a fluctuation index with a distribution index. The fluctuation index measures the frequency and amplitude of the change rates of a time series between the reversals of the development within a scanning window gliding over the whole time series. For analysis purposes a window width of 7 measurement points (=days) was introduced. The distribution index measures the scattering of realized values within a given scanning window. The more scores are restricted to only narrow intervals of the available scale range, the smaller the distribution index becomes. The score of this index increases as the interval filled by the realized values grows. The algorithm solves the problem of value distribution independently of the scale resolution, the width of the scanning window, and of any combination of these parameters.
58.Eckmann J. P., Oliffson Kamphorst S. and Ruelle D. (1987) Recurrence plots of dynamical systems. Europhysics Letters, 4, 973977.
59.Webber C. L. and Zbilut J. P. (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol., 76, 965973.
60.Lambert M. J., Whipple J. L., Vermeersch D. A., Smart D. W., Hawkins E. J., Nielsen S. L. and Goates M. (2002) Enhancing psychotherapy outcomes via providing feedback on client progress: a replication. Clin. Psychol. Psychother., 9, 91103.
61.Schiepek G. and Schönfelder V. (2007) Musterhafter Wandel. Gehirn & Geist, 10/2007, 5258.
62.Schiepek G., Tominschek I., Karch S., Lutz J., Mulert C., Meindl T. and Pogarell O. (2008) A controlled single case study with repeated fMRI measures during the treatment of a patient with obsessive-compulsive disorder: testing the nonlinear dynamics approach to psychotherapy. World J. Biol. Psychiatry, e-published 2008, journal in print. DOI:10.1080/15622970802311829
63. Multi-centre study of the Ludwig-Maximilians-University Munich, Clinic of Psychiatry (Dr Susanne Karch, PD Dr Oliver Pogarell, Dr Christoph Mulert), Hospital of Psychosomatic Medicine Windach/Ammersee and Day Treatment Centre Munich/Westend (Dr Igor Tominschek, Dipl. Psych. Stephan Heinzel, Professor Dr Michael Zaudig), University Hospital Vienna/Astria, Clinic of Psychiatry (Professor Dr Martin Aigner, Professor Dr Gerhard Lenz, Dr Markus Dold, Dr Annemarie Unger), MR Centre of Excellence, Medical University Vienna/Austria (Professor Dr Ewald Moser, Dr Christian Windischberger, Dr Florian Gerstl), and the Institute of Synergetics, and Psychotherapy Research, Paracelsus Medical University Salzburg/Austria (Professor Dr Günter Schiepek, head of the project).
64.Friedlander L. and Desrocher M. (2006) Neuroimaging studies of obsessive-compulsive disorder in adults and children. Clin. Psychol. Rev., 26, 3249.
65.Nakao T., Nakagawa A., Yoshiura T., Nakatani E., Nabeyama M., Yoshizato C., Kudoh A., Tada K., Yoshioka K., Kawamoto M., Togao O. and Kanba S. (2005) Brain activation of patients with obsessive-compulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: A functional magnetic resonance imaging study. Biol. Psychiatry, 57, 901910.
66.Schiepek G., Tominschek I., Karch S., Mulert C. and Pogarell O. (2007) Neurobiologische Korrelate der Zwangsstörungen – Aktuelle Befunde zur funktionellen Bildgebung. Psychother. Psych. Med., 57, 379394.
67.van Veen V. and Carter C. C. (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol. Behav., 77, 477482.
68.van Veen V. and Carter C. C. (2002) The timing of action-monitoring processes in the anterior cingulate cortex. J. Cog. Neurosci., 14, 593602.
69.King-Casas B., Tomlin D., Anen C., Camerer C. F., Quartz S. R. and Montague P. R. (2005) Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308, 7883.
70.Sanfey A. G., Rilling J. K., Aronson J. A., Nystrom L. E. and Cohen J. D. (2003) The neural basis of economic decision-making in the Ultimatum Game. Science, 300, 17551758.
71.Mayberg H. S., Brannan S. K., Mahurin R. K., Jerabek P. A., Brickman J. S., Tekell J. L., Silva J. A., McGinnis S., Glass T. G., Martin C. C. and Fox P. T. (1997) Cingulate function in depression: a potential predictor of treatment response. Neuroreport, 8, 10571061.
72.Karch S., Schiepek G., Aigner M., Tominschek I., Dold M., Lutz J., Mulert C., Meindl T., Pogarell O. and Zaudig M. (in preparation) Synergetics of neural and mental change processes: repeated fMRI measures during the psychotherapy of obsessive-compulsive disorder.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Review
  • ISSN: 1062-7987
  • EISSN: 1474-0575
  • URL: /core/journals/european-review
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 94 *
Loading metrics...

Abstract views

Total abstract views: 112 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.