Skip to main content Accessibility help
×
Home

Ultra-endurance athletic performance suggests that energetics drive human morphological thermal adaptation

  • Daniel P. Longman (a1), Alison Macintosh Murray (a2), Rebecca Roberts (a3), Saskia Oakley (a3), Jonathan C.K. Wells (a4) and Jay T. Stock (a3) (a5) (a6)...

Abstract

Both extinct and extant hominin populations display morphological features consistent with Bergmann's and Allen's Rules. However, the functional implications of the morphologies described by these ecological laws are poorly understood. We examined this through the lens of endurance running. Previous research concerning endurance running has focused on locomotor energetic economy. We considered a less-studied dimension of functionality, thermoregulation. The performance of male ultra-marathon runners (n = 88) competing in hot and cold environments was analysed with reference to expected thermoregulatory energy costs and the optimal morphologies predicted by Bergmann's and Allen's Rules. Ecogeographical patterning supporting both principles was observed in thermally challenging environments. Finishers of hot-condition events had significantly longer legs than finishers of cold-condition events. Furthermore, hot-condition finishers had significantly longer legs than those failing to complete hot-condition events. A degree of niche-picking was evident; athletes may have tailored their event entry choices in accordance with their previous race experiences. We propose that the interaction between prolonged physical exertion and hot or cold climates may induce powerful selective pressures driving morphological adaptation. The resulting phenotypes reduce thermoregulatory energetic expenditure, allowing diversion of energy to other functional outcomes such as faster running.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ultra-endurance athletic performance suggests that energetics drive human morphological thermal adaptation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ultra-endurance athletic performance suggests that energetics drive human morphological thermal adaptation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ultra-endurance athletic performance suggests that energetics drive human morphological thermal adaptation
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author. E-mail: D.Longman@Lboro.ac.uk

References

Hide All
Allen, J (1887) The influence of physical conditions in the genesis of species. Radical Review 1, 108.
American College of Sports Medicine position stand (2007) Medicine and Science in Sports and Exercise 39, 377390.
Armstrong, L and Pandolf, K (1988) Physical training, cardiorespiratory physical fitness and exercise-heat tolerance. In Pandolf, K, Sawka, M and Gonzalez, R (eds), Human Performance Physiology and Environmental Medicine at Terrestrial Extremes (pp. 199226). Indianapolis, IN: Benchmark Press.
Ashton, K, Tracy, M and Queiroz, A (2000) Is Bergmann's rule valid for mammals? The American Naturalist 156(4), 390415. https://doi.org/10.1086/303400
Bergmann, C (1847) Increase in the effectiveness of heat conservation in large subjects. Gottinger Studien 3, 595708.
Bramble, D and Carrier, DR (1983) Running and breathing in mammals. Science 219(4582), 251256.
Bramble, D and Jenkins, F (1993) Mammalian locomotor–respiratory integration: implications for diaphragmatic and pulmonary design. Science 262(5131), 235240.
Bramble, D and Lieberman, D (2004) Endurance running and the evolution of Homo. Nature 432(7015), 345352. https://doi.org/10.1038/nature03052
Bunn, H (2001) Hunting, power scavenging, and butchering by Hadza foragers and by Plio-Pleistocene Homo. In Meat-eating and Human Evolution. Oxford: Oxford University Press.
Carrier, DR (1984) The energetic paradox of human running and hominid evolution. Current Anthropology 25(4), 483495.
Cejka, N, Nechtle, B, Rust, C, Roseman, T and Lepers, R (2015) Performance and age of the fastest female and male 100-km ultramarathoners worldwide from 1960 to 2012. Journal of Strength and Conditioning Research 29(5), 11801190.
Crognier, E (1981) Climate and anthropometric variations in Europe and the Mediterranean area. Annals of Human Biology 8(2), 99107.
Cross, A, Collard, M and Nelson, A (2008) Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins. PLoS ONE 3(6). https://doi.org/10.1371/journal.pone.0002464
El Helou, N, Tafflet, M, Berthelot, G, Tolaini, J, Marc, A, Guillaume, M, … Toussaint, J (2012) Impact of environmental parameters on Marathon running performance. PLoS ONE 7(5), 19. https://doi.org/10.1371/journal.pone.0037407
Foster, F and Collard, M (2013) A Reassessment of Bergmann's rule in modern humans. PLoS ONE 8(8), e72269. https://doi.org/10.1371/journal.pone.0072269
Frykman, P, Harman, E, Opstad, P, Hoyt, R, DeLany, J and Friedl, K (2003) Effects of a 3-month endurance event on physical performance and body composition: the G2 Trans-Greenland expedition. Wilderness and Environmental Medicine 14(4), 249254. https://doi.org/10.1580/1080-6032(2003)14
Glickman, N, Mitchell, H, Keeton, R and Lambert, E (1967) Shivering and heat production in men exposed to intense cold. Journal of Applied Physiologyhysiology 22(1), 18. https://doi.org/10.1152/jappl.1967.22.1.1
Gonzalez, R and Gagge, A (1976) Warm discomfort and associated thermoregulatory changes during dry, and humid-heat acclimatization. Israel Journal of Medical Sciences 12(8), 804807.
Haïda, A, Dor, F, Guillaume, M, Quinquis, L, Marc, A, Marquet, L, Antero-Jacquemin, J, Tourny-Chollet, C, Desgorces, F, Berthelot, G and Toussaint, JF (2013) Environment and scheduling effects on sprint and middle distance running performances. PLoS ONE 8(11), 17. https://doi.org/10.1371/journal.pone.0079548
Hawley, J, Hargreaves, M, Joyner, M and Zierath, J (2014) Integrative biology of exercise. Cell 159, 738749.
Heglund, N and Taylor, C (1988) Speed, stride frequency and energy cost per stride: how do they change with body size and gait? Journal of Experimental Biology 138, 301318.
Helge, J, Lundby, C, Christensen, D, Langfort, J, Messonnier, L, Zacho, M, Andersen, JL and Saltin, B (2003) Skiing across the Greenland icecap: divergent effects on limb muscle adaptations and substrate oxidation. Journal of Experimental Biology 206(6), 10751083. https://doi.org/10.1242/jeb.00218
Hiernaux, J (1968) La diversité humaine en Afrique subsaharienne. Bruxelles: Editions de l'Institute de Sociology de l'Universite Libre de Bruxelles.
Hiernaux, J and Fromont, A (1976) The correlations between anthropobiological and climatic variables in sub-Saharan Africa: revised estimates. Human Biology 48(4), 757767.
Higgins, RW and Ruff, CB (2011) The effects of distal limb segment shortening on locomotor efficiency in sloped terrain: Implications for Neandertal locomotor behavior. American Journal of Physical Anthropology 146(3), 336345. https://doi.org/10.1002/ajpa.21575
Hill, R, Muhich, T and Humphries, M (2013) City-scale expansion of human thermoregulatory costs. PLoS ONE 8(10), 18. https://doi.org/10.1371/journal.pone.0076238
Holliday, T (1997a) Body proportions in Late Pleistocene Europe and modern human origins. Journal of Human Evolution 32, 423447.
Holliday, T (1997b) Postcranial evidence of cold adaptations in European Neanderthals. American Journal of Physical Anthropology 104(May 1996), 245258.
Holliday, T and Trinkaus, E (1991) Limb/trunk proportions in Neandertals and early anatomically modern humans. American Journal of Physical Anthropology 12, 9394.
Holliday, TW and Ruff, CB (2001) Relative variation in human proximal and distal limb segment lengths. American Journal of Physical Anthropology 116(1), 2633. https://doi.org/10.1002/ajpa.1098
Horowitz, M (2011) Heat acclimation, epigenetics, and cytoprotection memory. Comprehensive Physiology 4(1), 199230.
Hunter, S, Stevens, A, Magennis, K, Skelton, K and Fauth, M (2011) Is there a sex difference in the age of elite marathon runners? Medicine and Science in Sports and Exercise 43(4), 656664. https://doi.org/10.1249/MSS.0b013e3181fb4e00
Hutchinson, A (2017) Nike's sub-2-hour marathon attempt will be run on Formula One oval. Retrieved 12 July 2018, from Runners World website: https://www.runnersworld.com/news/a20849399/nikes-sub-2-hour-marathon-attempt-will-be-run-on-formula-one-oval/
Iampietro, P, Vaughn, J, Goldman, R, Kreider, M, Masucci, F and Bass, D (1960) Heat production from shivering. Journal of Applied Physiologyhysiology 15, 632634. https://doi.org/10.1152/jappl.1960.15.4.632
International Standards for Anthropometric Assessment (2001) International Society for the Advancement of Kinanthropology. https://doi.org/10.1152/japplphysiol.00187.2013
Kamberov, YG, Guhan, SM, DeMarchis, A, Jiang, J, Sherwood Wright, S, Morgan, BA, Sabeti, PC, Tabin, CJ and Lieberman, DE (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. Journal of Human Evolution, 125, 99105. https://doi.org/10.1016/j.jhevol.2018.10.008
Katzmarzyk, P (2010) Physical activity, sedentary behavior, and health: paradigm paralysis or paradigm shift? Diabetes 59(11), 27172725. https://doi.org/10.2337/db10-0822
Katzmarzyk, P and Leonard, W (1998) Climatic influences on human body size and proportions: ecological adaptations and secular trends. American Journal of Physical Anthropology 503, 483503. https://doi.org/10.1002/(SICI)1096-8644(199808)106
Keatinge, W, Coleshaw, S, Millard, C and Axelsson, J (1986) Exceptional case of survival in cold water. British Medical Journal (Clinical Research Edition) 292(6514), 171. https://doi.org/10.1136/bmj.292.6514.171
Knechtle, B and Bircher, S (2005) Changes in body composition during an extreme endurance run. Praxis 94, 371377.
Knechtle, B, Enggist, A and Jehle, T (2005) Energy turnover at the race across America (RAAM) – a case report. International Journal of Sports Medicine 26(6), 499503.
Knechtle, B, Knechtle, P and Lepers, R (2011) Participation and performance trends in ultra-triathlons from 1985 to 2009. Scandinavian Journal of Medicine and Science in Sports 21(6) https://doi.org/10.1111/j.1600-0838.2010.01160.x
Kumar, V, Shearer, J, Kumar, A and Darmstadt, G (2009) Neonatal hypothermia in low resource settings: a review. Journal of Perinatology 29(6), 401412. https://doi.org/10.1038/jp.2008.233
Lieberman, DE and Bramble, DM (2007) The evolution of marathon running. Sports Medicine 37, 288290.
Lieberman, D, Bramble, D, Raichlen, D and Shea, J (2006) Brains, brawn, and the evolution of human endurance running capabilities. In Grine, FE, Fleagle, JG and Leakey, RE (eds), The First Humans – Origin and Early Evolution of the Genus Homo. Berlin: Springer.
Longman, D, Wells, J and Stock, J (2015) Can persistence hunting signal male quality? A test considering digit ratio in endurance athletes. Plos One 10(4), e0121560. Retrieved from http://dx.plos.org/10.1371/journal.pone.0121560
Longman, D, Stock, J and Wells, J (2017a) A trade-off between cognitive and physical performance, with relative preservation of brain function. Scientific Reports 7(1). https://doi.org/10.1038/s41598-017-14186-2
Longman, DP, Prall, S, Shattuck, E, Stephen, I, Stock, J, Wells, J and Muehlenbein, M (2017b) Short-term resource allocation during extensive athletic competition. American Journal of Human Biology 30(1). https://doi.org/10.1002/ajhb.23052
Longman, DP, Surbey, M, Stock, J and Wells, J (2018) Tandem androgenic and psychological shifts in male reproductive effort following a manipulated ‘win’ or ‘loss’ in a sporting competition. Human Nature 29(3), 283310. https://doi.org/10.1007/s12110-018-9323-5
Lorenzo, S, Halliwill, J, Sawka, M and Minson, C (2010) Heat acclimation improves exercise performance. Journal of Applied Physiology 109(4), 11401147. https://doi.org/10.1152/japplphysiol.00495.2010
Maughan, R (2010) Distance running in hot environments: a thermal challenge to the elite runner. Scandinavian Journal of Medicine and Science in Sports 20, 95102. https://doi.org/10.1111/j.1600-0838.2010.01214.x
Minetti, AE (2003) Efficiency of equine express postal systems. Nature 426(December), 785786.
Nielsen, B, Hales, J, Strange, S, Christensen, N, Warberg, J and Saltin, B (1993) Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. The Journal of Physiology 460(1), 467485.
Ocobock, C (2016) Human energy expenditure, allocation, and interactions in natural temperate, hot, and cold environments. American Journal of Physical Anthropology 161(4), 667675. https://doi.org/10.1002/ajpa.23071
Pandolf, K (1998) Time course of heat acclimation and its decay. International Journal of Sports Medicine 19(S2), S157S160.
Paterson, J (1996) Coming to America: acclimation in macaque body structures and Bergmann's rule. International Journal of Primatology 17(4), 585611. https://doi.org/10.1007/BF02735193
Payne, S, Macintosh, A and Stock, J (2018) Body size and body composition effects on heat loss from the hands during severe cold exposure. American Journal of Physical Anthropology 166(4), 803811. https://doi.org/10.1002/ajpa.23432
Pomeroy, E, Stock, J, Stanojevic, S, Miranda, J, Cole, T and Wells, J (2012) Trade-offs in relative limb length among peruvian children: extending the thrifty phenotype hypothesis to limb proportions. PLoS ONE 7(12), e51795. https://doi.org/10.1371/journal.pone.0051795
Pontzer, H (2007) Effective limb length and the scaling of locomotor cost in terrestrial animals. The Journal of Experimental Biology 210(Pt 10), 17521761. https://doi.org/10.1242/jeb.002246
Racinais, S, Périard, J, Karlsen, A and Nybo, L (2015) Effect of heat and heat acclimatization on cycling time trial performance and pacing. Medicine and Science in Sports and Exercise 47(3), 601.
Raynaud, J, Martineaud, J, Bhatnagar, O, Vieillefond, H and Durand, J (1976) Body temperatures during rest and exercise in residents and sojourners in hot climate. International Journal of Biometeorology 20(4), 309317. https://doi.org/10.1007/BF01553588
Rivera-Brown, A, Rowland, T, Ramírez-Marrero, F, Santacana, G and Vann, A (2006) Exercise tolerance in a hot and humid climate in heat-acclimatized girls and women. International Journal of Sports Medicine 27(12), 943950. https://doi.org/10.1055/s-2006-923863
Roberts, D (1953) Body weight, race and climate. American Journal of Physical Anthropology 11(4), 533558.
Roberts, D (1973) Climate and Human Variability. Addison-Wesley Modules in Anthropology, No. 34. Reading, MA: Addison-Wesley.
Roberts, D (1978) Climate and Human Variability. Menlo Park, CA: Cummings.
Roberts, TJ, Kram, R, Weyand, PG and Taylor, CR (1998) Energetics of bipedal running. Journal of Experimental Biology 2751, 27452751.
Rode, A and Shephard, R (1994) Growth and fitness of Canadian inuit: secular trends, 1970–1990. American Journal of Human Biology 6(4), 525541. https://doi.org/10.1002/ajhb.1310060413
Ruff, C (1994) Morphological adaptation to climate in modern and fossil hominoids. Yearbook of Physical Anthropology 37, 65107.
Rüst, C, Knechtle, B, Rosemann, T and Lepers, R (2013) Analysis of performance and age of the fastest 100-mile ultra-marathoners worldwide. Clinics 68(5), 605611. https://doi.org/10.6061/clinics/2013(05)05.
Rüst, C, Zingg, M, Rosemann, T and Knechtle, B (2014) Will the age of peak ultra-marathon performance increase with increasing race duration? BMC Sports Science, Medicine and Rehabilitation 6(1), 115. https://doi.org/10.1186/2052-1847-6-36
Sawka, M, Wenger, C and Pandolf, K (1996) Thermoregulatory responses to acute exercise – heat stress and heat acclimation. Handbook of Physiology 4, 157186.
Sawka, M, Leon, L, Montain, S and Sonna, L (2011) Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Comprehensive Physiology 1(4), 18831928.
Scarr, S and McCartney, K (1983) How people make their own environments: a theory of genotype → environment effects. Child Development 54(2), 424435.
Serrat, M, King, D and Lovejoy, C (2008) Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proceedings of the National Academy of Sciences 105(49), 1934819353. https://doi.org/10.1073/pnas.0803319105
Speakman, J (2010) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. Journal of Animal Ecology 79, 726746. https://doi.org/10.1111/j.1365-2656.2010.01689.x
Steudel-Numbers, K and Tilkens, M (2004) The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins. Journal of Human Evolution 47(1–2), 95109. https://doi.org/10.1016/j.jhevol.2004.06.002
Steudel-Numbers, KL, Weaver, TD and Wall-Scheffler, CM (2007) The evolution of human running: effects of changes in lower-limb length on locomotor economy. Journal of Human Evolution 53(2), 191196. https://doi.org/10.1016/j.jhevol.2007.04.001
Stinson, S (1990) South American Indians. American Journal of Human Biology 2, 3751.
Tikuisis, P, Jacobs, I, Moroz, D, Vallerand, A and Martineau, L (2000) Comparison of thermoregulatory responses between men and women immersed in cold water. Journal of Applied Physiology 89(4), 14031411. https://doi.org/10.1152/jappl.2000.89.4.1403
Tilkens, M, Wall-Scheffler, C, Weaver, T and Steudel-Numbers, K (2007) The effects of body proportions on thermoregulation: an experimental assessment of Allen's rule. Journal of Human Evolution 53(3), 286291. https://doi.org/10.1016/j.jhevol.2007.04.005
Trinkaus, E (1981) Neanderthal limb proportions and cold adaptation. In Stringer, C (ed.), Aspects of Human Evolution (pp. 187224). London: Taylor and Francis.
Weaver, M and Ingram, D (1969) Morphological changes in swine associated with environmental temperature. Ecological Society of America 50(4), 710713.
Wells, J (2002) Thermal environment and human birth weight. Journal of Theoretical Biology 214(3), 413425. https://doi.org/10.1006/jtbi.2001.2465
Wells, J (2012) Ecogeographical associations between climate and human body composition: analyses based on anthropometry and skinfolds. American Journal of Physical Anthropology 147(2), 169186. https://doi.org/10.1002/ajpa.21591
Wells, J and Cole, T (2002) Adjustment of fat-free mass and fat mass for height in children aged 8 y. International Journal of Obesity 26(7), 947952. https://doi.org/10.1038/sj.ijo.0802027
Wheeler, P (1992) The thermoregulatory advantages of large body size for hominids foraging in savannah environments. Journal of Human Evolution 23, 351362.
Will, M, Pablos, A and Stock, J (2017) Long-term patterns of body mass and stature evolution within the hominin lineage. Royal Society Open Science 4, 171339.
Wright, S and Weyand, PG (2001) The application of ground force explains the energetic cost of running backward and forward. The Journal of Experimental Biology 204, 18051815. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11316501
Zihlman, A and Brunker, L (1979) Hominin bipedalism; then and now. Yearbook of Physical Anthropology 22, 132162.

Keywords

Ultra-endurance athletic performance suggests that energetics drive human morphological thermal adaptation

  • Daniel P. Longman (a1), Alison Macintosh Murray (a2), Rebecca Roberts (a3), Saskia Oakley (a3), Jonathan C.K. Wells (a4) and Jay T. Stock (a3) (a5) (a6)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed