Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T21:06:36.789Z Has data issue: false hasContentIssue false

EFFECTS OF TEMPERATURE, PHOTOPERIOD AND DEFOLIATION ON FLOWERING TIME OF LOTUS TENUIS (FABACEAE) IN BUENOS AIRES, ARGENTINA

Published online by Cambridge University Press:  28 March 2017

OSVALDO RAMÓN VIGNOLIO*
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata-Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, CC 276, 7620 Balcarce, Argentina
LUCAS RICARDO PETIGROSSO
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata-Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, CC 276, 7620 Balcarce, Argentina
IGNACIO MARTÍN RODRÍGUEZ
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata-Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, CC 276, 7620 Balcarce, Argentina
NATALIA LORENA MURILLO
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata-Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, CC 276, 7620 Balcarce, Argentina
*
Corresponding author. Email: vignolio.osvaldo@inta.gob.ar

Summary

The phenological development of crops from emergence to flowering time is largely controlled by temperature and photoperiod. Flowering time is a critical phenological stage for subsequent reproductive phase. Lotus tenuis management in grasslands, pastures and seed production systems is through defoliation and sowing date; however, yet little is known about their effects on flowering time. The data presented in this study were obtained from experiments conducted with L. tenuis during the years 1989 to 2016 under field conditions. Our objectives were to determine if flowering time (a) is affected by sowing date; (b) can be predicted through equations using temperature and photoperiod and (c) is affected by defoliation applied at vegetative stage. Two defoliation intensities were applied, low (LDI) crop height reduced by 54% compared to pre-defoliation crop height and high (HDI), crop height reduced by 75%. The rate of progress from seedling emergence to flowering time (inverse of time from emergence to first flowering, 1/f) was modulated by temperature, photoperiod and photothermal functions. When L. tenuis sowing was delayed from autumn to spring, time from seedling emergence to first flowering decreased from 260 to 100 days. 1/f was linearly related to average temperature (R²=0.75) and photoperiod (R²=0.85) and both variables (R²=0.92). Defoliation retarded flowering time. Flower and pod growth periods were shorter under defoliation than in control one. Defoliation did not cause abortion of flowers and pods. Flower production was fitted to quadratic function of photoperiod. Flowering peak was approximately within 15.2 h. The prediction of flowering time using thermal, photoperiod and photothermal models can provide information about crop management decisions, such as optimal environmental regimes for crop growth through sowing date.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrade, F. H. (1995). Analysis of growth and yield of maize, sunflower and soybean grown at Balcarce, Argentina. Field Crops Research 41:112.Google Scholar
Beuselinck, P. R. and McGraw, R. L. (1988). Indeterminate flowering and reproductive success in birdsfoot trefoil. Crop Science 28:842845.Google Scholar
Blumenthal, M. J. and McGraw, R. L. (1999). Lotus adaptation, use and management. In Trefoil: The Science and Technology of Lotus, 97119 (Ed Beuselinck, P. R.). Madison: CSSA Special Publication No. 28. CSSA.Google Scholar
Butler, T. J., Gerald, W., Evers, G. W., Hussey, M. A. and Ringer, L. J. (2002). Flowering in crimson clover as affected by planting date. Crop Science 42:242247.CrossRefGoogle ScholarPubMed
Cambareri, G. S. (2010). Partición de recursos y producción de semilla en respuesta a la densidad de plantas y época de siembra en cultivos de Lotus tenuis. Tesis Magister Scientiae, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina, 65 pp.Google Scholar
Chaichi, M. R. and Tow, P. G. (2000). The effects of sowing rate, defoliation intensity and time of defoliation commencement on vegetative and reproductive growth of medic swards. Journal of Agricultural Science and Technology 2:207216.Google Scholar
Craufurd, P. Q. and Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany 60:25292539.Google Scholar
Del Pozo, A., Ovalle, C., Aronson, J. and Avendaño, J. (2000). Developmental responses to temperature and photoperiod in ecotypes of Medicago polymorpha L. collected along an environmental gradient in central Chile. Annals of Botany 85:809814.Google Scholar
Egli, D. B. and Bruening, W. P. (2006). Temporal profiles of pod production and pod set in soybean. European Journal of Agronomy 24:1118.CrossRefGoogle Scholar
Escaray, F. J., Menendez, A. B., Gárriz, A., Pieckenstain, F. L., Estrella, M. J., Castagno, L. N., Carrasco, P., Sanjuán, J. and Ruiz, O. A. (2012). Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Science 182:121133.CrossRefGoogle ScholarPubMed
Fairey, D. T. and Smith, R. R. (1999). Seed production in birdsfoot trefoil. In Trefoil: The Science and Technology of Lotus, 145166 (Ed Beuselinck, P. R.). Madison: CSSA Special Publication No. 28. CSSA.Google Scholar
Iannucci, A., Di Fonzo, N. and Martiniello, P. (2002). Alfalfa (Medicago sativa L.) seed yield and quality under different forage management systems and irrigation treatments in a mediterranean environment. Field Crops Research 78:6574.Google Scholar
Iannucci, A., Terribile, M. R. and Martiniello, P. (2008). Effects of temperature and photoperiod of flowering time of forage legumes in a mediterranean environment. Field Crops Research 106:156162.Google Scholar
Papastylianou, P. T. and Bilalis, D. (2011). Flowering in sulla (Hedysarum coronarium L. cv. Carmen) and persian clover (Trifolium resupinatum L. cv. Laser) as affected by sowing date in a mediterranean environment. Australian Journal Crop Science 10:12981304.Google Scholar
Pomar, M. C. and Mendoza, R. (2008). Effect of photoperiod and phosphorus nutrition on Lotus tenuis flowering. Lotus Newsletter 38:112.Google Scholar
Romano, J. (2016). Análisis de la interacción entre Festuca arundinacea infectada con endófito y Lotus tenuis bajo condiciones de defoliación. Tesis Ingeniera Agrónoma. Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina. 51 pp.Google Scholar
Soil Survey Staff-USDA. (1999). Soil taxonomy: A basic system for classifying soils. In Agriculture Handbook 436, 871 2nd edn. Washington, DC: United States Government Printing Office.Google Scholar
Steiner, J. J. (2002). Birdsfoot trefoil flowering response to photoperiod length. Crop Science 42:17091718.CrossRefGoogle Scholar
Summerfield, R. J., Roberts, E. H., Ellis, R. H. and Lawn, R. J. (1991). Towards the reliable prediction of time to flowering in six annual crops. I. The development of simple models for fluctuating field environments. Experimental Agriculture 27:1131.CrossRefGoogle Scholar
Vignolio, O. R., Cambareri, G. S. Y., Petigrosso, L. R., Murillo, N. and Maceira, N. O. (2016). Reproductive development of Lotus tenuis (Fabaceae) crop defoliated at different times and intensities. American Journal of Plant Science 7:11801191.Google Scholar
Vignolio, O. R., Cambareri, G. S. and Maceira, N. O. (2010). Seed production of Lotus tenuis (Fabaceae), a forage legume: Effects of row spacing, seedling date, and plant defoliation. Crop and Pasture Science 61:10271035.Google Scholar
Vignolio, O. R., Fernández, O. N. and Castaño, J. (2006). Responses of Lotus glaber (Leguminosae) cv. Chajá to defoliation in reproductive stage. Annales Botanici Fennici 43:284287.Google Scholar
Vignolio, O. R., Fernández, O. N. and Maceira, N. O. (2002). Biomass allocation to vegetative and reproductive organs in Lotus glaber and L. corniculatus (Fabaceae). Australian Journal of Botany 50:7582.Google Scholar
Vignolio, O. R., Maceira, N. O., and Fernández, Y. N. O. (1996). Efectos del anegamiento sobre la reproducción de Lotus tenuis y Lotus corniculatus. Revista Argentina de Producción Animal 16:267278.Google Scholar
Supplementary material: File

Vignolio supplementary material

Figure S1

Download Vignolio supplementary material(File)
File 111.6 KB