Skip to main content Accessibility help




Changes in donor priorities have meant that agronomists working in the tropics find themselves in a fundamentally new operational space, one that demands rapid improvements in farmers' livelihoods resulting from the large-scale adoption of new technologies and crop management practices. As a result, on-farm trials in contemporary Agricultural Research for Development (AR4D) are increasingly implemented both to collect data and to spur farmer adoption. We examine the different interpretations and organisational practices of AR4D organisations in this new operational space, and reflect on the usefulness of on-farm trials for agricultural technology scaling. Three case studies are presented to address these questions – two in sub-Saharan Africa and one in South Asia. Each study is considered in light of Science and Technology Studies theory and locates science as a politically situated practice, recognising the tension that scientists face between providing evidence and persuading selected audiences. The case studies show that this tension results in the introduction of several biases that limit the scalability of the technologies under investigation. These include biases at the level of the trial location, host-farmer selection, trial design, management and evaluation. We conclude by discussing how the contemporary political and institutional environment of AR4D produces project beneficiaries and research outcomes on selected farms, but not necessarily impacts at scale.


Corresponding author

Corresponding author. Email:


Hide All
Andersson, J. A. and D'Souza, S. (2014). From adoption claims to understanding farmers and contexts: A literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agriculture, Ecosystems & Environment 187:116132.
Bijker, W. E., Hughes, T. P. and Pinch, T. J. (2012). The Social Construction of Technological Systems: New Directions in the Sociological History of Technology. Anniversary Edition ed. 2012. London, England: MIT University Press.
Bill and Melinda Gates Foundation (2016). Accessed online through []. Verified: 23 February, 2017.
CASCAPE (2012). CASCAPE Project Proposal, 2012, Wageningen, the Netherlands.
CASCAPE (2013a). CASCAPE Project Plan, 2013, Wageningen, the Netherlands.
CASCAPE (2013b). Annual Report 2012 (Addis Ababa University, Bahir Dar University, Hawassa University, Jimma University, Mekelle University, National Coordination Unit, Wageningen UR).
CASCAPE (2014). Annual Report 2013 (Addis Ababa University, Bahir Dar University, Hawassa University, Jimma University, Mekelle University, National Coordination Unit, Wageningen UR).
CASCAPE (2015). Annual Report 2014 (Addis Ababa University, Bahir Dar University, Hawassa University, Jimma University, Mekelle University, National Coordination Unit, Wageningen UR).
CGIAR (2016). CGIAR Strategy and Results Framework: Redefining how CGIAR does business until 2030. 48 Montpelier: CGIAR.
Cheesman, S., Andersson, J. A. and Frossard, E. (2017). Does closing knowledge gaps close yield gaps? On-farm conservation agriculture trials and adoption dynamics in three smallholder farming areas in Zimbabwe. Journal of Agricultural Science 155 (1):81100. doi:10.1017/S0021859616000095.
Cheesman, S., Thierfelder, C., Eash, N. S., Kassie, G. and Frossard, E. (2016). Soil carbon stocks in conservation agriculture systems of Southern Africa. Soil and Tillage Research 156:99109. doi:10.1016/j.still.2015.09.018.
CIAT (2001). Farmer Evaluations of Technology: Preference Ranking. Instructional Unit No.2. Guerrero, M. del P.; Ashby, J. A.; and Gracia, T. Cali, Colombia.
CIMMYT (1988). From Agronomic Data to Farmer Recommendations: An Economics Training Manual. Completely revised edition. Mexico. D.F.
Crane, T. A. (2014). Bringing science and technology studies into agricultural anthropology: technology development as cultural encounter between farmers and researchers. Culture, Agriculture, Food and Environment 36 (1):4555.
Dekker, M. and Kinsey, , , B. H. (2011). Contextualizing Zimbabwe's land reform: long-term observations from the first generation. Journal of Peasant Studies 38:9951019.
Franzel, S., Coe, R., Cooper, P., Place, F. and Scherr, S. J. (2001). Assessing the adoption potential of agroforestry practices in Sub-Saharan Africa. Agricultural Systems 69:3762
Gauri, V. and Galef, J. (2005). NGOs in Bangladesh: Activities, resources, and governance. World Development 3312 (12):20452065.
Giller, K. E., Witter, E., Corbeels, M. and Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research 114 (1):2334.
Glover, D., Sumberg, J. and Andersson, J. A. (2016). The adoption problem; or why we still understand so little about technological change in African Agriculture. Outlook on Agriculture 45 (1):36.
Gooding, D., Pinch, T. and Schaffer, S. (eds) (1989). The Uses of Experiment: Studies in the Natural Sciences. Cambridge: Cambridge University Press.
Kiptot, E., Hebinck, P., Franzel, S. and Richards, P. (2007). Adopters, testers or pseudo-adopters? Dynamics of the use of improved tree fallows by farmers in western Kenya. Agricultural Systems 94 (2):509519.
Latour, B. (1988). The Pasteurization of France. Cambridge, MA, Harvard University Press.
Latour, B. and Woolgar, S. (1979). Laboratory Life: the Social Construction of Scientific Facts. Los Angeles, USA: Sage Publications.
Maat, H. and Glover, D. (2012). Alternative configurations of agronomic experimentation. In Contested Agronomy: Agricultural Research in a Changing World, 131--145 (Eds Sumberg, J. and Thompson, J.). London: Routledge.
MOA, Bangladesh and FAO (2013). Master Plan for Agricultural Development in the Southern Region of Bangladesh. 104 Dhaka, Bangladesh: Ministry of Agriculture (MoA, Government of Bangladesh) and United Nations Food and Agriculture Organization.
MOA, Ethiopia (2014). National Strategy for Ethiopia's Agricultural Extension System, Vision, Systemic Bottlenecks and Priority Interventions, December 2014, Addis Ababa.
Ngwira, A. R., Johnsen, F. H., Aune, J. B., Mekuria, M. and Thierfelder, , C. (2014). Adoption and extent of conservation agriculture practices among smallholder farmers in Malawi. Journal of Soil and Water Conservation 69:107119. doi:10.2489/jswc.69.2.107.
OECD (2016). Accessed online through [].
Phiri, D., Franzel, S., Mafongoya, P., Jere, I., Katanga, R. and Phiri, S. (2004). Who is using the new technology? The association of wealth status and gender with the planting of improved tree fallows in Eastern Province, Zambia. Agricultural Systems 79 (2):131144.
Spradley, J. P. (1980). Participant Observation. Long Grove, IL: Waveland Press, Inc.
Sumberg, J. and Thompson, J. (Eds.) (2012). Contested Agronomy: Agricultural Research in a Changing World. London: Routledge.
Thierfelder, C., Bunderson, W. T. and Mupangwa, W. (2015b). Evidence and lessons learned from long-term on-farm research on conservation agriculture systems in communities in Malawi and Zimbabwe. Environments 2:317337. doi:10.3390/environments2030317.
Thierfelder, C., Matemba-Mutasa, R., Bunderson, T. W., Mutenje, M., Nyagumbo, I. and Mupangwa, W. (2016). Evaluating manual conservation agriculture systems in southern Africa. Agriculture, Ecosystems and Environment 222:112224. doi:10.1016/j.agee.2016.02.009.
Thierfelder, C., Rusinamhodzi, L., Setimela, P., Walker, F. and Eash, N. S. (2015a). Conservation agriculture and drought-tolerant germplasm: Reaping the benefits of climate-smart agriculture technologies in central Mozambique. Renewable Agriculture and Food Systems:115. doi:10.1017/S1742170515000332.
USAID (2016a). Data Release Terms in Informed Consent Clauses. Washington, DC: USAID. []. Verified: 4 March, 2017.
USAID (2016b). Feed the Future Indicator Handbook Definition Sheets. Washington, DC: USAID.
van Donge, J. K. (2006). Ethnography and participant observation. In Doing Development Research, 180--189 (Eds Desai, V. and Potter, R.). London: Sage Publications.
World Bank (2015). Data - Bangladesh South Asia. vol. 2015. Washington, DC: World Bank.




Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed