Skip to main content Accessibility help


  • C. THIERFELDER (a1) and P. C. WALL (a1)


Conservation agriculture (CA) systems are based on minimal soil disturbance, crop residue retention and crop rotation. Although the capacity of rotations to break pest and disease cycles is generally recognized, other benefits of crop rotations in CA systems are seldom acknowledged and little understood. We monitored different conventional and CA cropping systems over the period from 2005 to 2009 in a multi-seasonal trial in Monze, southern Zambia. Both monocropped maize and different maize rotations including cotton and the green manure cover crop sunnhemp (Crotalaria juncea) were compared under CA conditions, with the aim of elucidating the effects of crop rotations on soil quality, soil moisture relations and maize productivity. Infiltration, a sensitive indicator of soil quality, was significantly lower on conventionally ploughed plots in all cropping seasons compared to CA plots. Higher water infiltration rate led to greater soil moisture content in CA maize treatments seeded after cotton. Earthworm populations, total carbon and aggregate stability were also significantly higher on CA plots. Improvements in soil quality resulted in higher rainfall use efficiency and higher maize grain yield on CA plots especially those in a two- or three-year rotation. In the 2007/08 and 2008/2009 season, highest yields were obtained from direct-seeded maize after sunnhemp, which yielded 74% and 136% more than maize in the conventionally ploughed control treatment with a continuous maize crop. Even in a two-year rotation (maize-cotton), without a legume green manure cover crop, 47% and 38% higher maize yields were recorded compared to maize in the conventionally ploughed control in the two years, respectively. This suggests that there are positive effects from crop rotations even in the absence of disease and pest problems. The overall profitability of each system will, however, depend on markets and prices, which will guide the farmer's decision on which, if any, rotation to choose.


Corresponding author

Corresponding author.


Hide All
Amézquita, E., Cobo, Q. L. and Torres, E. A. (1999). Diseño, construccion y evaluacion de un minisimulador de lluvia para estudios de susceptibilidad a erosion en areas de laderas. Revista Suelos Equatoriales 29: 6670.
Anderson, J. M. and Ingram, J. (1993). Tropical Soil Biology and Fertility: A Handbook of Methods. 2nd edn.Wallingford, UK: CAB International.
Balkcom, K. S. and Reeves, D. W. (2005). Sunn-hemp utilized as a legume cover crop for corn production. Agronomy Journal 97: 2631.
Bolliger, A., Magid, J., Amado, T., Neto, F., Dos Santos Ribeiro, M., Calegari, A., Ralisch, R. and De Neergaard, A. (2006). Taking stock of the Brazilian ‘zero-till revolution’: a review of landmark research and farmers' practice. Advances in Agronomy 91: 47110.
Brévault, T., Guibert, H. and Naudin, K. (2009). Preliminary studies of pest constraints to cotton seedlings in a direct seeding mulch-based system in Cameroon. Experimental Agriculture 45: 2533.
Cook, R. J. (1990). Twenty-five years of progress towards biological control. In Biological Control of Soilborne Pathogens, 114. (Ed Hornby, D.). Wallingford, UK: CAB International.
CSO (2004). Agriculture Production in Zambia 1989–2004. Lusaka, Zambia: Central Statistical Office.
Derpsch, R. (2008). No-tillage and conservation agriculture: A progress report. In No-till Farming Systems, 740. (Eds Goddard, T., Zöbisch, M. A., Gan, Y. T., Ellis, W, Watson, A. and Sombatpanit, S.). Bangkok, Thailand: Special Publication No. 3, World Association of Soil and Water Conservation.
Dowswell, C. R., Paliwal, R. L. and Cantell, R. P. (1996). Maize in the Third World. Colorado, USA: Westview Press.
FAO (1998). World Reference Base for Soil Resources. Rome, Italy: FAO.
FAO (2002). Conservation agriculture: Case studies in Latin America and Africa. Rome: FAO Soils Bulletin 78, FAO.
Jayne, T. S., Villarreal, M., Pingali, P., Hemrich, G. (2004). Interactions between the agricultural sector and the HIV/AIDS pandemic: Implications for agricultural policy. ESA Working Paper No. 04–06, FAO, Italy.
Kassam, A., Friedrich, T., Shaxson, F. and Pretty, J. (2009). The spread of conservation agriculture: Justification, sustainability and uptake. International Journal of Agricultural Sustainability 7: 292320.
GART (2006). Golden Valley Agriculture Research Trust: Yearbook 2006. Lusaka, Zambia: GART.
Giller, K. E. (2001). Nitrogen Fixation in Tropical Cropping Systems. 2nd edn.New York: CABI Publishing.
Govaerts, B., Mezzalama, M., Sayre, K. D., Crossa, J., Nicol, J. M. and Deckers, J. (2006). Long-term consequences of tillage, residue management, and crop rotation on maize/wheat root rot and nematode populations in subtropical highlands. Applied Soil Ecology 32: 305315.
Govaerts, B., Fuentes, M., Mezzalama, M., Nicol, J. M., Deckers, J., Etchevers-Barra, J. D., Figueroa-Sandoval, B. and Sayre, K. D. (2007). Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Research 94: 209219.
Haggblade, S. and Tembo, G. (2003). Conservation farming in Zambia: EPTD Discussion Paper No. 108. Washington D.C: IFPRI.
Helmers, G. A., Yamoah, C. F. and Varvel, G. E. (2001). Separating the impacts of crop diversification and rotations on risk. Agronomy Journal 93: 13371340.
Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production? Journal of American Soil Agronomy 145: 127137.
Hulugalle, N. R., Nehl, D. B. and Weaver, T. B. (2004). Soil properties, and cotton growth, yield and fibre quality in three cotton-based cropping systems. Soil and Tillage Research 75: 131141.
Maltas, A., Corbeels, M., Scopel, E., Wery, J. and Macena da Silva, F. A. (2009). Cover crop and nitrogen effects on maize productivity in no-tillage systems of the Brazilian cerrados. Agronomy Journal 101: 10361046.
Pagliai, M., Vignozzi, N. and Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil and Tillage Research 79: 131143.
Reicosky, D. C. and Saxton, K. (2007). The benefits of no-tillage. In No-Tillage Seeding in Conservation Agriculture. 2nd edn, 1120. (Eds Baker, C. J., Saxton, K. E., Ritchie, W. R., Chamen, W. C. T., Reicosky, D. C., Ribeiro, M. F. S., Justice, S. E. and Hobbs, ). UK: CABI Publishing.
Roth, C. H., Meyer, B., Frede, H. G. and Derpsch, R. (1988). Effect of mulch rates and tillage systems on infiltrability and other soil physical properties of an Oxisol in Parafla, Brazil. Soil and Tillage Research 11: 8191.
Shaxson, T. F. and Barber, R. G. (2003). Optimizing soil moisture for plant production: The significance of soil porosity. Rome, Italy: FAO Soils Bulletin 79.
Statistix (2008). Statistix 9: Analytical Software. Tallahassee, USA:
Thierfelder, C., Amezquita, E. and Stahr, K. (2005). Effects of intensifying organic manuring and tillage practices on penetration resistance and infiltration rate. Soil and Tillage Research 82:211226.
Wall, P. C. (2007). Tailoring conservation agriculture to the needs of small farmers in developing countries: An analysis of issues. Journal of Crop Improvement 19: 137155.
Wang, K. H., McSorley, R. and Gallaher, R.N. (2003). Effect of Crotalaria juncea amendment on nematode communities in soil with different agricultural histories. Journal of Nematology 35:294301.
World Bank (2007). Malawi poverty and vulnerability assessment: Investing in our future. Synthesis Report No. 36546-MW: Main Findings and Recommendations, The World Bank, Washington D.C.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Experimental Agriculture
  • ISSN: 0014-4797
  • EISSN: 1469-4441
  • URL: /core/journals/experimental-agriculture
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed