Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-13T00:15:46.826Z Has data issue: false hasContentIssue false

Size and Shape of Plots for Estimating Yield Losses from Cereal Foliage Diseases

Published online by Cambridge University Press:  03 October 2008

W. C. James
Affiliation:
Research Branch, Canada Department of Agriculture, Ottawa
C. S. Shih
Affiliation:
Research Branch, Canada Department of Agriculture, Ottawa

Summary

Data from uniformity trials on healthy and diseased wheat and oat crops showed that the coefficient of variation for yield decreased as plot size increased and became nearer to square in shape. Infection with Septoria leaf blotch of oats and powdery mildew of wheat did not appear to affect yield variability. Plots larger than rod row size (where 16 ft of the centre row of 3 rows is harvested) are recommended to detect differences of 10 per cent in yield between two treatments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caldwell, R. M. & Narvaes, I. (1960). Phytopath. 50, 630.Google Scholar
Christidis, B. G. (1931). J. agric. Sci., Camb. 21, 14.CrossRefGoogle Scholar
Christidis, B. G. (1939). Emp. J. exp. Agric. 7, 330.Google Scholar
Cochran, W. G. (1940). A Survey of Experimental Design. Mimeo. U.S.D.A.Google Scholar
Cochran, W. G. & Cox, G. M. (1957). Experimental Design. 2nd ed.New York: Wiley.Google Scholar
Federer, W. T. (1955). Experimental Design. New York: Macmillan.Google Scholar
Fleischmann, G. & McKenzie, R. I. H. (1965). Phytopath. 55, 767.Google Scholar
Frey, K. J. & Baten, W. D. (1953). Agron. J. 45, 502.CrossRefGoogle Scholar
James, W. C. (1967). Proc. 4th Br. Insectic. Fungic. Conf. 1, 111.Google Scholar
James, W. C. (1971a). Can. Pl. Dis. Surv. 51 (2), 39.Google Scholar
James, W. C. (1971b). Can. Dep. Agric. Publ. 1458, 80p.Google Scholar
James, W. C., Jenkins, J. E. E. & Jemmett, J. L. (1968). Ann. appl. Biol. 62, 273.CrossRefGoogle Scholar
Jenkins, J. E. E. & Jemmett, J. L. (1967). Proc. 4th Br. Insectic. Fungic. Conf. 1, 108.Google Scholar
Klages, K. H. W. (1933). J. Am. Soc. Agron. 25, 464.CrossRefGoogle Scholar
Large, E. C. (1954). Pl. Path. 3, 128.CrossRefGoogle Scholar
Large, E. C. & Doling, D. A. (1962). Pl. Path. 11, 47.Google Scholar
Last, F. T. (1953). Ann. appl. Biol. 40, 312.CrossRefGoogle Scholar
Last, F. T. (1962). Pl. Path. 2, (3), 133.CrossRefGoogle Scholar
LeClerg, E. L. (1967). In Background Pap. Prepared for the FAO Symp. on Crop Losses. Rome: FAO.Google Scholar
Love, H. H. & Craig, W. T. (1938). Cornell Univ. Mem. 219.Google Scholar
McNeal, F. H. & Sharp, E. L. (1963). Pl. Dis. Reptr. 47, 763.Google Scholar
Robinson, H. F., Rigney, J. A. & Harvey, P. H. (1948). Tech. Bull. N.C. Agric. Exp. Sta. 86.Google Scholar
Romig, R. W. & Calpouzos, L. (1970). Phytopath. 60, 1801.CrossRefGoogle Scholar
Skoropad, W. P. (1960). Commonw. Phytopath. News 6, 25.Google Scholar
Smith, H. F. (1938). J. agric. Sci., Camb. 28, 1.CrossRefGoogle Scholar
Smith, H. F. & Blair, I. D. (1950). Ann. appl. Biol. 37, 570.CrossRefGoogle Scholar
Spinks, G. T. (1913). J. agric. Sci., Camb. 5, 231.CrossRefGoogle Scholar
Thompson, R. C. (1934). J. agric. Res. 48, 379.Google Scholar
Torrie, J. H., Shands, H. L. & Leith, B. D. (1943). J. Amer. Soc. Agron. 35, 645.CrossRefGoogle Scholar
Wiebe, G. A. (1935). J. agric. Res. 50, 331.Google Scholar