Skip to main content Accessibility help
×
×
Home

TRADE-OFFS BETWEEN BIOMASS USE AND SOIL COVER. THE CASE OF RICE-BASED CROPPING SYSTEMS IN THE LAKE ALAOTRA REGION OF MADAGASCAR

  • K. NAUDIN (a1), E. SCOPEL (a1), A. L. H. ANDRIAMANDROSO (a2), M. RAKOTOSOLOFO (a2), N. R. S. ANDRIAMAROSOA RATSIMBAZAFY (a2), J. N. RAKOTOZANDRINY (a2), P. SALGADO (a3) and K. E. GILLER (a4)...
Summary

Farmers in the Lake Alaotra region of Madagascar are currently evaluating a range of conservation agriculture (CA) cropping systems. Most of the expected agroecological functions of CA (weed control, erosion control and water retention) are related to the degree of soil cover. Under farmers’ conditions, the grain and biomass productivity of these systems is highly variable and the biomass is used for several purposes. In this study, we measured biomass production of cover crops and crops in farmers’ fields. Further, we derived relationships to predict the soil cover that can be generated for a particular quantity of mulch. We used these relationships to explore the variability of soil cover that can be generated in farmers’ fields, and to estimate how much of the biomass can be removed for use as livestock feed, while retaining sufficient soil cover. Three different kinds of cropping systems were investigated in 91 farmers’ fields. The first two cropping sequences were on the hillsides: (i) maize + pulse (Vigna unguiculata or Dolichos lablab) in year 1, followed by upland rice in year 2; (ii) the second crop sequence included several years of Stylosanthes guianensis followed by upland rice; (iii) the third crop sequence was in lowland paddy fields: Vicia villosa or D. lablab, which was followed by rice within the same year and repeated every year. The biomass available prior to rice sowing varied from 3.6 t ha−1 with S. guianensis to 7.3 t ha−1 with V. villosa. The relationship between the mulch quantity (M) and soil cover (C) was measured using digital imaging and was well described by the following equation: C = 1 − exp(−Am × M), where Am is an area-to-mass ratio with R2 > 0.99 in all cases. The calculated average soil cover varied from 56 to 97% for maize + V. unguiculata and V. villosa, respectively. In order to maintain 90% soil cover at rice sowing, the average amount of biomass of V. villosa that could be removed was at least 3 t ha−1 for three quarters of the fields. This quantity was less for other annual or biennial cropping systems. On average the V. villosa aboveground biomass contained 236 kg N ha−1. The study showed that for the conditions of farmers of Malagasy, the production and conservation of biomass is not always sufficient to fulfil all the above-cited agroecological functions of mulch. Inventory of the soil cover capacity for different types of mulch may help farmers to decide how much biomass they can remove from the field.

Copyright
Corresponding author
Corresponding author. Email: krishna.naudin@cirad.fr
References
Hide All
Bas Rhône Languedoc (BRL) (2010). Cuvette du lac Alaotra, réseau pluviométrique. Annuaire 2000 à 2010. Ambatondrazaka, Madagascar: BRL-Madagascar, CIRAD, 154 pp.
Bilalis, D., Sidiras, N., Economou, G. and Vakali, C. (2003). Effect of different levels of wheat straw soil surface coverage on weed flora in Vicia faba crops. Journal of Agronomy and Crop Science 189:233241.
Erenstein, O. (2003). Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop residues and cover crops. Agriculture, Ecosystems & Environment 100:1737.
Food and Agriculture Organization (FAO) (2010a). http://www.fao.org/ag/ca/ (Accessed 28 June 2011).
Food and Agriculture Organization (FAO) (2010b). http://www.fao.org/nr/land/soils/soil/wrb-soil-maps/classification-key/en/#c25142 (Accessed 10 November 2010).
Giller, K. E. and Cadisch, G. (1995). Future benefits from biological nitrogen fixation. An ecological approach to agriculture. Plant and Soil 174:255277.
Giller, K. E., Witter, E., Corbeels, M. and Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Research 114:2334.
Gilley, J., Finkner, S., Spomer, R. and Mielke, L. (1986). Runoff and erosion as affected by corn residue: Part I. Total losses. Transactions of the ASAE 29:157160.
Govaerts, B., Sayre, K. D. and Deckers, J. (2005). Stable high yields with zero tillage and permanent bed planting? Field Crops Research 94:3342.
Govaerts, B., Sayre, K. D., Lichter, K., Dendooven, L. and Deckers, J. (2007). Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant and Soil 291:3954.
Gregory, J. (1982). Soil cover prediction with various amounts and types of crop residue. Transactions of the ASAE 25:13331337.
Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production? Journal of Agricultural Science 145:127137.
Husson, O., Charpentier, H., Raharison, T., Razanamparany, C., Moussa, N., Rasolomanjaka, J., Michellon, R., Naudin, K., Rakotoarinivo, C., Rakotondramanana, , Enjalric, F. and Séguy, L. (2010). Les systèmes SCV adaptés aux différentes zones agroécologiques de Madagascar. In Manuel Pratique du Semis Direct à Madagascar (Ed CIRAD). Antananarivo, Madagascar: GSDM, CIRAD.
Husson, O., Charpentier, H., Razanamparany, C., Moussa, N., Michellon, R., Naudin, K., Rakotoarinivo, C., Rakotondramanana, and Séguy, L. (2008). Stylosanthes guianensis. In Manuel Pratique du Semis Direct à Madagascar. Vol. III. Chap. 3.2.1. Fiches Techniques Plantes de Couverture: Légumineuses Pérennes, 12 (Eds CIRAD, TAFA, GSDM, AFD and MAEP). Antananarivo, Madagascar: CIRAD.
Maltas, A., Corbeels, M., Scopel, E., Wery, J. and da Silva, F. A. M. (2009). Cover crop and nitrogen effects on maize productivity in no-tillage systems of the Brazilian cerrados. Agronomy Journal 101:10361046.
Naudin, K., Gozé, E., Balarabe, O., Giller, K. E. and Scopel, E. (2010). Impact of no tillage and mulching practices on cotton production in North Cameroon: a multi-locational on-farm assessment. Soil and Tillage Research 108:68–67.
Neto, M. S., Scopel, E., Corbeels, M., Cardoso, A. N., Douzet, J. M., Feller, C., Piccolo, M. D., Cerri, C. C. and Bernoux, M. (2010). Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: an on-farm synchronic assessment. Soil and Tillage Research 110:187195.
Penot, E., Scopel, E., Domas, R. and Naudin, K. (2010). La durabilité est elle soluble dans le développement ? L'adoption des techniques de conservation de l'agriculture dans un contexte d'incertitudes multiples au lac Alaotra, Madagascar. In Colloque “Agir en Situation D'incertitude, 10 (Eds IFSA and CIRAD). Montpellier, Madagascar: IFSA-CIRAD.
Rakotondramanana, , Enjalric, F. and Husson, O. (2010). Documentation et synthèse de l'Agriculture de Conservation à Madagascar (FAO). Antananarivo, Madagascar: GSDM, 96 pp.
Razafimbelo, T., Albrecht, A., Feller, C., Ravelojaona, H., Moussa, N., Razanamparany, C., Rakotoarinivo, C., Razafintsalama, H., Michellon, R., Naudin, K. and Rabeharisoa, L. (2010). Stockage de carbone dans les sols sous systèmes de culture en semis direct sous couvert végétal (SCV) dans différents contextes pédoclimatiques à Madagascar. Etude et Gestion des Sols 17:143158.
Reicosky, D. (2008). Carbon sequestration and environmental benefits from no-till systems. In No-Till Farming Systems, Vol. 3, 4358 (Ed Goddard, T. E. A.). Bangkok, Thailand: World Association of Soil and Water Conservation.
Roberge, G. and Toutain, B. (1999). Cultures Fourragères Tropicales. Montpellier, Madagascar: CIRAD.
Rufino, M. C., Rowe, E. C., Delve, R. J. and Giller, K. E. (2006). Nitrogen cycling efficiencies through resource-poor African crop-livestock systems. Agriculture Ecosystems & Environment 112:261282.
Sainju, U. M., Whitehead, W. F., Singh, B. P. and Wang, S. (2006). Tillage, cover crops, and nitrogen fertilization effects on soil nitrogen and cotton and sorghum yields. European Journal of Agronomy 25:372382.
Saito, K., Azoma, K. and Oikeh, S. O. (2010). Combined effects of Stylosanthes guianensis fallow and tillage management on upland rice yield, weeds and soils in southern Benin. Soil and Tillage Research 107:5763.
Scopel, E., Chavez Guerra, E. and Arreola-Tostado, J. (1999). Le semis direct avec paillis de résidus dans l'ouest mexicain: une histoire d'eau? Agriculture et Développement 21:7186.
Scopel, E., Da Silva, F. A. M., Corbeels, M., Affholder, F. O. and Maraux, F. (2004). Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24:383395.
Séguy, L., Husson, O., Charpentier, H., Bouzinac, S., Michellon, R., Chabanne, A., Boulakia, S., Tivet, F., Naudin, K., Enjalric, F., Chabierski, S., Rakotondralambo, P. and Rakotondramanana, (2009). La gestion des écosystèmes cultivés en semis direct sur couverture végétale permanente. In Manuel du semis direct à Madagascar, Vol I, Chap. 2., 32 (Eds GSDM and CIRAD). Antananarivo, Madagascar: CIRAD.
Shepherd, K. D., Palm, C. A., Gachengo, C. N. and Vanlauwe, B. (2003). Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near-infrared spectroscopy. Agronomy Journal 95:13141322.
Smets, T., Poesen, J. and Knapen, A. (2008). Spatial scale effects on the effectiveness of organic mulches in reducing soil erosion by water. Earth-Science Reviews 89:112.
Steiner, J. L., Schomberg, H. H., Unger, P. W. and Cresap, J. (2000). Biomass and residue cover relationships of fresh and decomposing small grain residue. Soil Science Society of America Journal 64:21092114.
Teasdale, J. R. and Mohler, C. L. (1993). Light transmittance, soil-temperature, and soil-moisture under residue of hairy vetch and rye. Agronomy Journal 85:673680.
Teasdale, J. R. and Mohler, C. L. (2000). The quantitative relationship between weed emergence and the physical properties of mulches. Weed Science 48:385392.
Thierfelder, C. and Wall, P. C. (2010). Rotation in conservation agriculture systems of zambia: effects on soil quality and water relations. Experimental Agriculture 46:309325.
Tittonell, P., Vanlauwe, B., Corbeels, M. and Giller, K. E. (2008). Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil 313:1937.
Tran, H., Salgado, P. and Lecomte, P. (2009). Species, climate and fertilizer effects on grass fibre and protein in tropical environments. The Journal of Agricultural Science 147:555568.
Volk, L. B. S., Cogo, N. P. and Streck, E. V. (2004). Water erosion influenced by surface and subsurface soil physical conditions resulting from its management in the absence of vegetal cover. Revista Brasileira De Ciencia Do Solo 28:763774.
Wezel, A. and Rath, T. (2002). Resource conservation strategies in agro-ecosystems of semi-arid West Africa. Journal of Arid Environments 51:383400.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Experimental Agriculture
  • ISSN: 0014-4797
  • EISSN: 1469-4441
  • URL: /core/journals/experimental-agriculture
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed