Hostname: page-component-cb9f654ff-qc88w Total loading time: 0 Render date: 2025-08-07T14:09:58.882Z Has data issue: false hasContentIssue false

Immunomodulatory Effects of Pelargonium sidoides Extract (EPs7630) in the Treatment of Acute Rhinosinusitis

Published online by Cambridge University Press:  15 July 2025

Aleksandar Perić*
Affiliation:
Department of Otorhinolaryngology, Faculty of Medicine of the Military Medical Academy, https://ror.org/04dt6a039University of Defense, Belgrade, Serbia
Sandra Vezmar Kovačević
Affiliation:
Department of Pharmacokinetics and Clinical Pharmacy, https://ror.org/02qsmb048University of Belgrade Faculty of Pharmacy, Belgrade, Serbia
Aleksandra Barać
Affiliation:
Clinic of Infectious and Tropical Diseases, Clinical Center of Serbia, https://ror.org/02qsmb048University of Belgrade Faculty of Medicine, Belgrade, Serbia
Aneta Perić
Affiliation:
Institute of Pharmacy, Faculty of Medicine of the Military Medical Academy, https://ror.org/04dt6a039University of Defense, Belgrade, Serbia
Danilo Vojvodić
Affiliation:
Institute of Medical Research, Division of Clinical and Experimental Immunology, Faculty of Medicine of the Military Medical Academy, https://ror.org/04dt6a039University of Defense, Belgrade, Serbia
*
Corresponding author: Aleksandar Perić; Email: aleksandarperic1971@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Background

In this short narrative review, we would like to discuss the immunomodulatory effects of South African geranium (Pelargonium sidoides) root extract EPs7630 in treating acute rhinosinusitis. The plant has been used for centuries to treat respiratory tract inflammation, such as sinusitis, pharyngitis and bronchitis. South African geranium is rich in polyphenols, flavonoids, tannins, diterpenes and proanthocyanidins, but the main constituent is a type of coumarin called ‘umckalin’ (6–hydroxy–5,5–dimethoxy–coumarin). The substance is standardised as an aqueous-ethanolic extract from the root of this plant under the code name EPs7630.

Methods

The article presents the results of in vitro and in vivo studies of administering this herbal drug in acute viral, post-viral and bacterial rhinosinusitis. The focus is on the immunomodulatory effects of EPs7630 during the therapy of this acute inflammation of the nasal mucosa.

Results

According to the results of some studies, EPs7630 stimulates monocyte-dependent activity and inhibits neutrophil-dependent chemokine activity. However, given the small number of studies, the level of evidence is low, implying the need for new research.

Conclusion

Particular attention should be paid to the effect of EPs7630 on bradykinin, the mediator that triggers most inflammatory processes in acute rhinosinusitis.

Information

Type
Short Review
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Introduction

Acute rhinosinusitis (ARS) is a heterogeneous clinical entity in terms of aetiology, pathogenesis and severity of symptoms and signs. According to the EPOS 2020 guideline for diagnosis and therapy of rhinosinusitis, ARS lasts up to 12 weeks (Ref. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1). Diagnosis is based on medical history and physical examination, including rhinoscopy and nasal endoscopy (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1Reference Perić4). Factors predisposing to the development of ARS include allergic rhinitis, anatomical variations in the lateral nasal wall that impair sinus ventilation and drainage, ciliary dyskinesia, air pollution and active and passive smoking (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1Reference Günaydın, Eroğlu, Tellioğlu, Emiralioğlu, Özçelik, Yalçın, Doğru and Kiper8). ARS occurs primarily as a viral infection of the nasal mucosal layer in over 98% of cases (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Orlandi, Kingdom, Smith, Bleier, DeConde, Luong, Poetker, Soler, Welch, Wise, Adappa, Alt, Anselmo-Lima, Bachert, Baroody, Batra, Bernal-Sprekelsen, Beswick, Bhattacharyya, Chandra, Chang, Chiu, Chowdhury, Citardi, Cohen, Conley, DelGaudio, Desrosiers, Douglas, Eloy, Fokkens, Gray, Gudis, Hamilos, Han, Harvey, Hellings, Holbrook, Hopkins, Hwang, Javer, Jiang, Kennedy, Kern, Laidlaw, Lal, Lane, Lee, Lee, Levy, Lin, Lund, McMains, Metson, Mullol, Naclerio, Oakley, Otori, Palmer, Parikh, Passali, Patel, Peters, Philpott, Psaltis, Ramakrishnan, Ramanathan, Roh, Rudmik, Sacks, Schlosser, Sedaghat, Senior, Sindwani, Smith, Snidvongs, Stewart, Suh, Tan, Turner, van Drunen, Voegels, Wang, Woodworth, Wormald, Wright, Yan, Zhang and Zhou2, Reference Jaume, Valls-Mateus and Mullol9Reference Arcimowicz11). Rhinoviruses cause inflammation in about 50% of viral infections, and their binding to epithelial cells of the nasal mucosa is favoured by the release of intercellular adhesion molecule 1 (ICAM-1) (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Orlandi, Kingdom, Smith, Bleier, DeConde, Luong, Poetker, Soler, Welch, Wise, Adappa, Alt, Anselmo-Lima, Bachert, Baroody, Batra, Bernal-Sprekelsen, Beswick, Bhattacharyya, Chandra, Chang, Chiu, Chowdhury, Citardi, Cohen, Conley, DelGaudio, Desrosiers, Douglas, Eloy, Fokkens, Gray, Gudis, Hamilos, Han, Harvey, Hellings, Holbrook, Hopkins, Hwang, Javer, Jiang, Kennedy, Kern, Laidlaw, Lal, Lane, Lee, Lee, Levy, Lin, Lund, McMains, Metson, Mullol, Naclerio, Oakley, Otori, Palmer, Parikh, Passali, Patel, Peters, Philpott, Psaltis, Ramakrishnan, Ramanathan, Roh, Rudmik, Sacks, Schlosser, Sedaghat, Senior, Sindwani, Smith, Snidvongs, Stewart, Suh, Tan, Turner, van Drunen, Voegels, Wang, Woodworth, Wormald, Wright, Yan, Zhang and Zhou2, Reference Salman, Dasgupta, Eldeirawi, Nyenhuis and Lee7Reference Jaume, Valls-Mateus and Mullol9). Other viral pathogens are coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), adenoviruses, respiratory syncytial viruses, influenza and parainfluenza (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Orlandi, Kingdom, Smith, Bleier, DeConde, Luong, Poetker, Soler, Welch, Wise, Adappa, Alt, Anselmo-Lima, Bachert, Baroody, Batra, Bernal-Sprekelsen, Beswick, Bhattacharyya, Chandra, Chang, Chiu, Chowdhury, Citardi, Cohen, Conley, DelGaudio, Desrosiers, Douglas, Eloy, Fokkens, Gray, Gudis, Hamilos, Han, Harvey, Hellings, Holbrook, Hopkins, Hwang, Javer, Jiang, Kennedy, Kern, Laidlaw, Lal, Lane, Lee, Lee, Levy, Lin, Lund, McMains, Metson, Mullol, Naclerio, Oakley, Otori, Palmer, Parikh, Passali, Patel, Peters, Philpott, Psaltis, Ramakrishnan, Ramanathan, Roh, Rudmik, Sacks, Schlosser, Sedaghat, Senior, Sindwani, Smith, Snidvongs, Stewart, Suh, Tan, Turner, van Drunen, Voegels, Wang, Woodworth, Wormald, Wright, Yan, Zhang and Zhou2, Reference Jaume, Valls-Mateus and Mullol9, Reference Mullol, Alobid, Mariño-Sánchez, Izquierdo-Domínguez, Marin, Klimek, Wang and Liu10). During inflammation, viruses trigger a strong immune response driven by various pro-inflammatory cytokines and chemokines and bradykinin, a potent inflammatory mediator that has a very important role in the pathogenesis of bacterial infection and acute inflammation (Refs. Reference Jaume, Valls-Mateus and Mullol9Reference Arcimowicz11). The symptoms of ARS can be divided into ‘systemic’ and ‘local’ symptoms. Systemic symptoms, such as fever, muscle aches, headache and malaise, are the result of the release of cytokines and chemokines from neutrophils and lymphocytes (Ref. Reference Eccles12). Bradykinin mainly causes local symptoms, such as nasal congestion, runny nose, sinus pain and sneezing due to stimulation of the sensory endings of the trigeminal nerve (Ref. Reference Eccles12). The weakened sense of smell is a consequence of the combined effect of bradykinin and proinflammatory cytokines on the olfactory neuroepithelium, which is particularly pronounced in the influenza virus and SARS-CoV-2 infection (Ref. Reference Eccles12). Symptoms, such as nasal obstruction, increased nasal secretions, postnasal discharge, pain and pressure in the face and forehead and a weakened sense of smell, subside within 10 days (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Orlandi, Kingdom, Smith, Bleier, DeConde, Luong, Poetker, Soler, Welch, Wise, Adappa, Alt, Anselmo-Lima, Bachert, Baroody, Batra, Bernal-Sprekelsen, Beswick, Bhattacharyya, Chandra, Chang, Chiu, Chowdhury, Citardi, Cohen, Conley, DelGaudio, Desrosiers, Douglas, Eloy, Fokkens, Gray, Gudis, Hamilos, Han, Harvey, Hellings, Holbrook, Hopkins, Hwang, Javer, Jiang, Kennedy, Kern, Laidlaw, Lal, Lane, Lee, Lee, Levy, Lin, Lund, McMains, Metson, Mullol, Naclerio, Oakley, Otori, Palmer, Parikh, Passali, Patel, Peters, Philpott, Psaltis, Ramakrishnan, Ramanathan, Roh, Rudmik, Sacks, Schlosser, Sedaghat, Senior, Sindwani, Smith, Snidvongs, Stewart, Suh, Tan, Turner, van Drunen, Voegels, Wang, Woodworth, Wormald, Wright, Yan, Zhang and Zhou2, Reference Arcimowicz11). However, in 17–21% of cases, the inflammatory process in the mucosa persists even without the presence of a virus, leading to acute post-viral rhinosinusitis (APRS) with the prolongation and worsening of symptoms and signs for up to 12 weeks (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Perić4, Reference Hoffmans, Wagemakers, van Drunen, Hellings and Fokkens5, Reference Arcimowicz11). In only 0.5–2% of cases, ARS occurs as a primary bacterial inflammation, acute bacterial rhinosinusitis (ABRS) (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Perić4, Reference Hoffmans, Wagemakers, van Drunen, Hellings and Fokkens5, Reference Arcimowicz11). The symptoms worsen after the fifth day: the nasal secretions become purulent, the pain in the projection of the sinuses increases and the body temperature remains above 38.5 degrees, with elevated levels of C-reactive protein (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Perić4, Reference Hoffmans, Wagemakers, van Drunen, Hellings and Fokkens5, Reference Arcimowicz11).

The fact that the vast majority of patients with ARS suffered from a viral infection points to the unreasonable use of antibiotics in the treatment of this disease. This was particularly pronounced in certain parts of the world during the coronavirus disease 19 (COVID-19) pandemic. The increase in gastrointestinal symptoms, allergic reactions and, above all, the resistance of bacterial strains to a wide range of antibiotics has prompted experts to reconsider the use of other drugs that can effectively eliminate the symptoms of ARS. Part of those medicinal products that could serve as an alternative are herbal medicines (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1Reference Arcimowicz3). Some of them were the subject of preclinical and clinical studies, and the results recommend them to be a part of official guidelines for the treatment of ARS (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Orlandi, Kingdom, Smith, Bleier, DeConde, Luong, Poetker, Soler, Welch, Wise, Adappa, Alt, Anselmo-Lima, Bachert, Baroody, Batra, Bernal-Sprekelsen, Beswick, Bhattacharyya, Chandra, Chang, Chiu, Chowdhury, Citardi, Cohen, Conley, DelGaudio, Desrosiers, Douglas, Eloy, Fokkens, Gray, Gudis, Hamilos, Han, Harvey, Hellings, Holbrook, Hopkins, Hwang, Javer, Jiang, Kennedy, Kern, Laidlaw, Lal, Lane, Lee, Lee, Levy, Lin, Lund, McMains, Metson, Mullol, Naclerio, Oakley, Otori, Palmer, Parikh, Passali, Patel, Peters, Philpott, Psaltis, Ramakrishnan, Ramanathan, Roh, Rudmik, Sacks, Schlosser, Sedaghat, Senior, Sindwani, Smith, Snidvongs, Stewart, Suh, Tan, Turner, van Drunen, Voegels, Wang, Woodworth, Wormald, Wright, Yan, Zhang and Zhou2).

Pelargonium sidoides root extract (EPs7630)

Root extracts of South African geranium (Pelargonium sidoides) have been used for centuries, especially by the indigenous people of South Africa, to treat respiratory and digestive tract infections, such as sinusitis, pharyngitis, bronchitis, tuberculosis, gastroenteritis and others (Refs. Reference Perić13Reference Brendler and van Wyk15). The plant is rich in polyphenols, flavonoids, tannins, diterpenes and proanthocyanidins, but the main constituent is a type of coumarin called ‘umckalin’ (6–hydroxy–5,5–dimethoxy–coumarin) (Refs. Reference Perić13Reference Brendler and van Wyk15) (Figure 1). After the plant was brought to Great Britain at the end of the 19th century, a root extract of this plant has been produced in Germany as a standardised drug under the name ‘Umckaloabo’ since the sixties of the 20th century (Refs. Reference Perić13Reference Brendler and van Wyk15). The drug is standardised as an aqueous-ethanolic extract from the root of this plant under the code name EPs7630 (Refs. Reference Perić13Reference Brendler and van Wyk15). The drug has been shown to have significant activity against multidrug-resistant strains of Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pyogenes isolated from the pharynx of patients, with minimal inhibitory concentrations (MICs) > 800 μg/ml for most of the mentioned bacteria (Refs. Reference Kolodziej14, Reference Brendler and van Wyk15). It has also shown efficacy against influenza type A, respiratory syncytial viruses, coronaviruses, parainfluenza and Coxsackie viruses in inhibitory concentration (IC) values > 100 μg/ml (Refs. Reference Kolodziej14, Reference Brendler and van Wyk15). This antiviral effect is based on inhibiting the enzyme neuraminidase, which is important for viral replication (Refs. Reference Kolodziej14, Reference Brendler and van Wyk15). Pharmacological tests have shown its impact on elements of innate and acquired immunity. It stimulates mucociliary transport and has an anti-adhesive effect on bacteria during the infectious phase of the respiratory tract (Refs. Reference Kolodziej14, Reference Brendler and van Wyk15). This effect was shown to be dose-dependent, and at a concentration of 30 μg/ml, EPs7630 increased the frequency of cilia firing in cultured nasal epithelial cells by 125% (Refs. Reference Kolodziej14, Reference Brendler and van Wyk15). At the same dose of 30 μg/ml, it significantly increased the phagocytic activity of macrophages and natural killer (NK) cell cultures from the nasal mucosa and stimulated nitric oxide (NO) production (Refs. Reference Kolodziej14Reference Bachert, Schapowal, Funk and Kieser16). At the concentration of 25 μg/ml, EPs7630 stimulated the production of tumour necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and IL-12 in macrophages cultured from the nasal mucosa (Refs. Reference Kolodziej14Reference Bachert, Schapowal, Funk and Kieser16). This finding suggests that this herbal drug may increase the resistance of the nasal mucosa to viruses and bacteria (Refs. Reference Kolodziej14Reference Bachert, Schapowal, Funk and Kieser16).

Figure 1. A. Appearance of Pelargonium sidoides plant; B. Appearance of Pelargonium sidoides root; C. Chemical structure of umckalin.

EPs7630 and AVRS

EPs7630 not only blocks the enzyme neuraminidase, which is necessary for the virus to enter the cell and multiply, but also may trigger a strong immune response that works differently from viral infections. The immunomodulatory effect of EPs7630 in viral infections has been demonstrated in three in vitro studies. In a study by Witte et al. (Ref. Reference Witte17), human peripheral blood mononuclear cells (PBMCs) previously infected with the influenza virus and cytomegalovirus (CMV) were treated with EPs7630. The results showed that EPs7630 strongly stimulated the production of the proinflammatory cytokines IL-6 and TNF-α in PBMCs (Ref. Reference Witte17) (Table 1). This stimulative effect was shown to be dose-dependent, and the first effect on the concentrations of all three cytokines was already visible at a drug concentration of 1 μg/ml. In addition, a less pronounced effect on the anti-inflammatory cytokine IL-10 was observed (Ref. Reference Witte17). The results suggested the presence of an EPs7630-induced different inflammatory mediator profile from that induced by viral infection, which causes the production of more anti-inflammatory cytokines (Ref. Reference Witte17) (Table 1). These results suggest that EPs7630 may act as an immunostimulant before viral infection. It could promote innate immune defence and the body’s ability to eliminate potentially invading viruses (Ref. Reference Witte17) (Table 1). In another in vitro study, Witte et al. (Ref. Reference Witte, Koch, Volk, Wolk and Sabat18) showed that the administration of EPs7630 to a culture of human CD4+ memory T cells and monocytes selectively stimulated the production of IL-17 and IL-22 in these cells at a drug concentration of 3 μg/ml (Table 1). In addition, IL-22 significantly increased the expression of the antimicrobial protective protein S100A9 in the respiratory epithelium. EPs7630 has a strong inhibitory effect on interferon-gamma production (IFN-γ). Thus, it may prevent local mucosal damage by this proinflammatory T1 cytokine (Ref. Reference Witte, Koch, Volk, Wolk and Sabat18). These results suggest that EPs7630 could replace antibiotics in treating a potential bacterial superinfection in viral sinusitis and bronchitis (Ref. Reference Witte, Koch, Volk, Wolk and Sabat18) (Table 1).

Table 1. Immunomodulatory effects of EPs7630 in the treatment of acute rhinosinusitis

The site of entry of SARS-CoV-2 into the human body is, in most cases, the olfactory neuroepithelium (Ref. Reference Chen, Geng, Jiang, Xiong and Lei19). Although inflammation often has the characteristics of AVRS, it also has its peculiarities, especially the more frequent impairment of the sense of smell and taste, which can affect the patient’s emotional state. Research has shown that olfactory impairment in COVID-19 is due to damage to the sustentacular supporting cells of the olfactory neuroepithelium (Ref. Reference Chen, Geng, Jiang, Xiong and Lei19). COVID-19 infection harms the speed of mucociliary transport, making the airway mucosa more susceptible to bacterial infection in the post-viral period (Ref. Reference Ozer Ozturk, Aslan and Bayındır20). A subsequent in vitro study showed that the administration of EPs7630 at a concentration of 10 μg/ml reduced the ability of SARS-CoV-2 to invade cultured lung epithelial cells by altering the protein composition of the viral spike (Ref. Reference Papies, Emanuel, Heinemann, Kulić, Schroeder, Tenner, Lehner, Seifert and Müller21) (Table 1). In addition, the concentration of IL-6 and IL-1β was increased, while the concentrations of IL-8, IL-13, TNF-α, IFN-γ-induced monokine (MIG) and interferon γ-induced protein 10 kDa (IP-10) were decreased in the epithelial cell culture fluid (Ref. Reference Papies, Emanuel, Heinemann, Kulić, Schroeder, Tenner, Lehner, Seifert and Müller21) (Table 1). The presence of similar respiratory mucosa in the nose and sinuses could imply similar results related to AVRS. Part of the results related to the production of TNF-α is in contradiction with the previous results of in vitro studies, where the stimulatory effect of this extract on the production of this cytokine was reported as strong (Refs. Reference Perić13Reference Witte17). This underlines the fact that the results of in vitro research depend on which cell cultures are used and on the local conditions prevailing in the laboratory, implying the need for in vivo studies.

EPs7630 and APRS

The pathophysiology of APRS is not entirely clear. In this clinical entity, viral infections trigger numerous changes in the structure of the airway mucosa, including increased infiltration by neutrophils and monocytes and disturbances in host immune response and adaptive immunity (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Arcimowicz3). Infection of the respiratory epithelium by viruses induces strong pro-inflammatory cytokine production. Those cytokines are IL-6, TNF-α, IL-1β, IFN-β and IFN-γ, and the chemokines are IP-10, IL-8 and interferon-inducible T-cell alpha chemoattractant [I-TAC]) (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Arcimowicz3). This increased local production of inflammatory mediators, together with protective surfactant proteins and increased mucus production, is thought to prevent bacterial superinfection but leads to persistent inflammation in the nasal and paranasal sinus mucosa (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Arcimowicz3). Bacteria do not usually play a role in the pathogenesis of APRS. The concentrations of inflammatory mediators in nasal secretions reliably reflect the condition of the nasal mucosa. A previous in vivo case–control study has shown that, the concentrations of non-selective chemokines (monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein 1 alpha [MIP-1α], MIP-1β, MIP-3α), which attract various inflammatory cells (monocytes, eosinophils, neutrophils) to the site of acute inflammation, are increased in patients with APRS (Ref. Reference Perić, Vezmar Kovačević, Barać, Gaćeša, Perić and Vojvodić22) (Table 1). Also, the concentrations of chemokines responsible for attracting and activating neutrophils (IL-8 and epithelial-derived neutrophil-activating peptide 78 [ENA-78]) were locally elevated compared to healthy individuals (Ref. Reference Perić, Vezmar Kovačević, Barać, Gaćeša, Perić and Vojvodić22). However, after 10 days of oral administration of EPs7630 (three times daily, 20 mg in tablet form), there was an increase in the concentrations of chemokines related to monocytes (MCP-1, IP-10 and MIP-1β) and a decrease in the concentration of chemokines related to neutrophil function (IL-8, growth-regulated oncogene alpha [GROα], ENA-78 and MIP-1α) (Ref. Reference Perić, Vezmar Kovačević, Barać, Gaćeša, Perić and Vojvodić22) (Figure 2) (Table 1). At the same time, an improvement was shown in all endoscopic findings and signs of APRS (Ref. Reference Perić, Vezmar Kovačević, Barać, Gaćeša, Perić and Vojvodić22) (Table 1). Thus, as in a viral infection, EPs7630 may stimulate monocyte activity and partially suppress neutrophil activity at the site of acute inflammation. Although this study was not placebo-controlled, these results suggest that EPs7630 could be considered one of the drugs in APRS therapy.

Figure 2. Immunomodulatory effects of EPs7630 in the treatment of APRS. Abbreviations: MCP1: monocyte chemoattractant protein 1; IP10: interferon γ-induced protein 10 kDa; MIP1β: macrophage inflammatory protein 1 beta; IL8: interleukin 8; ENA78: epithelial-derived neutrophil-activating peptide 78; GROα: growth-regulated oncogene alpha; MIP1α: macrophage inflammatory protein alpha; T Ly: T lymphocyte; MF: macrophage; Act. Endot. Cell: activated endothelial cell; Mastocyte: mast cell; NK: natural killer cell.

EPs7630 and uncomplicated ABRS

Previous studies suggest that EPs7630 may be effective in the treatment of uncomplicated ABRS (Refs. Reference Thäle, Kiderlen and Kolodziej23Reference Bachert26). A prospective, randomised, open-label study has shown that 10-day use of EPs7630 (20 mg three times daily in tablet form) significantly reduced the incidence of patients with positive cultures of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis from the middle nasal meatus (Ref. Reference Perić, Gaćeša, Barać, Sotirović and Perić25). In contrast, amoxicillin tablets (3 × 500 mg/day) only reduced the growth of Streptococcus pneumoniae and Haemophilus influenzae cultures (Ref. Reference Perić, Gaćeša, Barać, Sotirović and Perić25). The results of the same study showed higher absolute improvement in the total score of nasal symptoms as well as separate nasal symptoms, such as nasal congestion, weakened sense of smell and sense of facial pain and pressure (Ref. Reference Perić, Gaćeša, Barać, Sotirović and Perić25). In endoscopic findings, patients using EPs7630 had less mucosal oedema and mucopurulent secretions than those treated with amoxicillin (Ref. Reference Perić, Gaćeša, Barać, Sotirović and Perić25). The explanation for such effects could be the fact that EPs7630 was shown to increase the release of antibacterial peptides (defensins, lactoferrin and bactericidal/permeability-increasing protein [BP-IP]) from neutrophils and increase the phagocytic activity of macrophages against bacteria (Ref. Reference Bachert26).

In another in vivo randomised, prospective, open-label study, the clinical and immunomodulatory effects of the macrolide antibiotic roxithromycin and EPs7630 were compared in the treatment of uncomplicated ABRS (Ref. Reference Perić, Vezmar Kovačević, Barać, Perić and Vojvodić27). After a 10-day administration of EPs7630 (three times daily, 20 mg in tablet form), an improvement in endoscopic findings and nasal symptoms was observed, although the clinical effect of roxithromycin in tablet form (2 × 150 mg/day) was better. In the control group of untreated patients with ABRS, there was no improvement after 10 days. This indicates that we cannot expect spontaneous improvement of symptoms and clinical findings in patients with uncomplicated ABRS (Ref. Reference Perić, Vezmar Kovačević, Barać, Perić and Vojvodić27) (Table 1). Therefore, medical treatment of ABRS is necessary. In the nasal secretions of patients who did not receive therapy, an increase in the concentration of almost all chemokines was observed after 10 days. Interestingly, similar to APRS, following treatment with EPs7630, the results indicated increased concentrations of MCP-1, IP-10 and MIP-β and decreased levels of MIP-1α, ENA-78, GROα and IL-8 in the nasal secretions (Ref. Reference Perić, Vezmar Kovačević, Barać, Perić and Vojvodić27) (Figure 3) (Table 1). Roxithromycin therapy significantly increased the concentration of IP-10 and decreased the concentration of IL-8, ENA-78, MCP-1 and MIP-1α in nasal fluid (Figure 3) (Table 1). The results showed that the two drugs similarly affect the production of chemokines that regulate the function of monocytes and neutrophils in the nasal and paranasal sinus mucosa (Ref. Reference Perić, Vezmar Kovačević, Barać, Perić and Vojvodić27).

Figure 3. Immunomodulatory effects of EPs7630 and roxithromycin in therapy of uncomplicated ABRS. MCP1: monocyte chemoattractant protein 1; IP10: interferon γ-induced protein 10 kDa; MIP1β: macrophage inflammatory protein 1 beta; IL8: interleukin 8; ENA78: epithelial-derived neutrophil-activating peptide 78; GROα: growth-regulated oncogene alpha; MIP1α: macrophage inflammatory protein alpha; T Ly: T lymphocyte; MF: macrophage; Mastocyte: mast cell; NK: natural killer cell.

Expert summary and future directions

The studies have shown that cytokines and chemokines play an important role in the pathogenesis of all three clinical phenotypes of ARS (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Orlandi, Kingdom, Smith, Bleier, DeConde, Luong, Poetker, Soler, Welch, Wise, Adappa, Alt, Anselmo-Lima, Bachert, Baroody, Batra, Bernal-Sprekelsen, Beswick, Bhattacharyya, Chandra, Chang, Chiu, Chowdhury, Citardi, Cohen, Conley, DelGaudio, Desrosiers, Douglas, Eloy, Fokkens, Gray, Gudis, Hamilos, Han, Harvey, Hellings, Holbrook, Hopkins, Hwang, Javer, Jiang, Kennedy, Kern, Laidlaw, Lal, Lane, Lee, Lee, Levy, Lin, Lund, McMains, Metson, Mullol, Naclerio, Oakley, Otori, Palmer, Parikh, Passali, Patel, Peters, Philpott, Psaltis, Ramakrishnan, Ramanathan, Roh, Rudmik, Sacks, Schlosser, Sedaghat, Senior, Sindwani, Smith, Snidvongs, Stewart, Suh, Tan, Turner, van Drunen, Voegels, Wang, Woodworth, Wormald, Wright, Yan, Zhang and Zhou2, Reference Eccles12). While the role of bradykinin in the pathogenesis of AVRS and ABRS is well documented (Refs. Reference Fokkens, Lund, Hopkins, Hellings, Kern, Reitsma, Toppila-Salmi, Bernal-Sprekelsen, Mullol, Alobid, Terezinha Anselmo-Lima, Bachert, Baroody, von Buchwald, Cervin, Cohen, Constantinidis, De Gabory, Desrosiers, Diamant, Douglas, Gevaert, Hafner, Harvey, Joos, Kalogjera, Knill, Kocks, Landis, Limpens, Lebeer, Lourenco, Meco, Matricardi, O’Mahony, Philpott, Ryan, Schlosser, Senior, Smith, Teeling, Tomazic, Wang, Wang, Zhang, Agius, Ahlstrom-Emanuelsson, Alabri, Albu, Alhabash, Aleksic, Aloulah, Al-Qudah, Alsaleh, Baban, Baudoin, Balvers, Battaglia, Bedoya, Beule, Bofares, Braverman, Brozek-Madry, Richard, Callejas, Carrie, Caulley, Chussi, de Corso, Coste, El Hadi, Elfarouk, Eloy, Farrokhi, Felisati, Ferrari, Fishchuk, Grayson, Goncalves, Grdinic, Grgic, Hamizan, Heinichen, Husain, Ping, Ivaska, Jakimovska, Jovancevic, Kakande, Kamel, Karpischenko, Kariyawasam, Kawauchi, Kjeldsen, Klimek, Krzeski, Kopacheva Barsova, Kim, Lal, Letort, Lopatin, Mahdjoubi, Mesbahi, Netkovski, Nyenbue Tshipukane, Obando-Valverde, Okano, Onerci, Ong, Orlandi, Otori, Ouennoughy, Ozkan, Peric, Plzak, Prokopakis, Prepageran, Psaltis, Pugin, Raftopulos, Rombaux, Riechelmann, Sahtout, Sarafoleanu, Searyoh, Rhee, Shi, Shkoukani, Shukuryan, Sicak, Smyth, Sindvongs, Soklic Kosak, Stjarne, Sutikno, Steinsvag, Tantilipikorn, Thanaviratananich, Tran, Urbancic, Valiulius, Vasquez de Aparicio, Vicheva, Virkkula, Vicente, Voegels, Wagenmann, Wardani, Welge-Lussen, Witterick, Wright, Zabolotniy, Zsolt and Zwetsloot1, Reference Orlandi, Kingdom, Smith, Bleier, DeConde, Luong, Poetker, Soler, Welch, Wise, Adappa, Alt, Anselmo-Lima, Bachert, Baroody, Batra, Bernal-Sprekelsen, Beswick, Bhattacharyya, Chandra, Chang, Chiu, Chowdhury, Citardi, Cohen, Conley, DelGaudio, Desrosiers, Douglas, Eloy, Fokkens, Gray, Gudis, Hamilos, Han, Harvey, Hellings, Holbrook, Hopkins, Hwang, Javer, Jiang, Kennedy, Kern, Laidlaw, Lal, Lane, Lee, Lee, Levy, Lin, Lund, McMains, Metson, Mullol, Naclerio, Oakley, Otori, Palmer, Parikh, Passali, Patel, Peters, Philpott, Psaltis, Ramakrishnan, Ramanathan, Roh, Rudmik, Sacks, Schlosser, Sedaghat, Senior, Sindwani, Smith, Snidvongs, Stewart, Suh, Tan, Turner, van Drunen, Voegels, Wang, Woodworth, Wormald, Wright, Yan, Zhang and Zhou2, Reference Eccles12), the role of this potent mediator in the pathophysiology of APRS is unclear and needs to be investigated in the near future. Although only five studies explored the immunomodulatory properties of EPs7630, they all showed that administration of the drug stimulated monocyte-dependent activity and inhibited neutrophil-dependent chemokine activity in all three forms of ARS (Refs. Reference Witte17, Reference Witte, Koch, Volk, Wolk and Sabat18, Reference Papies, Emanuel, Heinemann, Kulić, Schroeder, Tenner, Lehner, Seifert and Müller21, Reference Perić, Vezmar Kovačević, Barać, Gaćeša, Perić and Vojvodić22, Reference Bachert26). However, the results of three studies on antiviral effects are based on laboratory analysis, and it is necessary to have in vivo studies. Moreover, the two studies on immunomodulation in the treatment of APRS and ABRS are not sufficient to draw major conclusions. Although the level of evidence is low, the results of the studies may suggest that the extract of Pelargonium sidoides could be an option in the therapy of AVRS and APRS and could replace or reduce the use of antibiotics in the treatment of uncomplicated ABRS. Particular attention should be paid to the use of plant extracts concerning their effect on bradykinin, the mediator that triggers most inflammatory processes in ARS. Recent research has shown that the cytokine storm in COVID-19 is triggered by bradykinin, so blocking bradykinin receptors could reduce its effects (Refs. Reference da Silva, de Araújo-Júnior, da Silva-Júnior, Heimfarth, Martins-Filho, Quintans and Quintans-Júnior28, Reference van de Veerdonk, Kouijzer, de Nooijer, van der Hoeven, Maas, Netea and Brüggemann29). The results of an experimental study in mice, in which the application of gel from the leaves of Ipomoea (Convolvulaceae) on skin oedema by blocking bradykinin activity has an anti-inflammatory, anti-oedematous and wound-healing effect, are encouraging (Ref. Reference Xavier-Santos, Passos, Gomes, Cruz, Alves, Garcia, da Silva, Lopes, Araujo-Junior, Zucolotto, Silva-Junior, Félix-Silva and Fernandes-Pedrosa30). This is where research in the field of phytotherapy should start when it comes to inflammation of the mucous membranes of the upper respiratory tract.

Data availability statement

All data obtained or analysed as part of the study are included in this published article.

Acknowledgements

Project of the Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia (MFVMA02/23-25/).

Author contribution

Conception and design: Aleksandar Perić, Danilo Vojvodić; Acquisition of data: Aleksandar Perić, Sandra Vezmar Kovačević, Aleksandra Barać, Aneta Perić, Danilo Vojvodić; Analysis and interpretation of data: Aleksandar Perić, Sandra Vezmar Kovačević, Aleksandra Barać, Aneta Perić, Danilo Vojvodić; Drafting of the manuscript: Aleksandar Perić, Sandra Vezmar Kovačević, Danilo Vojvodić; Revising of the manuscript for important intellectual content: Aleksandar Perić, Sandra Vezmar Kovačević, Aleksandra Barać, Aneta Perić, Danilo Vojvodić; All authors approved the final version of the manuscript.

Competing interests

The authors declare none.

Ethical standard

The procedures are in accordance with the relevant ethical standards for human and animal experimentations and with the Helsinki Declaration of 1975 as revised in 2008.

References

Fokkens, WJ, Lund, VJ, Hopkins, C, Hellings, PW, Kern, R, Reitsma, S, Toppila-Salmi, S, Bernal-Sprekelsen, M, Mullol, J, Alobid, I, Terezinha Anselmo-Lima, W, Bachert, C, Baroody, F, von Buchwald, C, Cervin, A, Cohen, N, Constantinidis, J, De Gabory, L, Desrosiers, M, Diamant, Z, Douglas, RG, Gevaert, PH, Hafner, A, Harvey, RJ, Joos, GF, Kalogjera, L, Knill, A, Kocks, JH, Landis, BN, Limpens, J, Lebeer, S, Lourenco, O, Meco, C, Matricardi, PM, O’Mahony, L, Philpott, CM, Ryan, D, Schlosser, R, Senior, B, Smith, TL, Teeling, T, Tomazic, PV, Wang, DY, Wang, D, Zhang, L, Agius, AM, Ahlstrom-Emanuelsson, C, Alabri, R, Albu, S, Alhabash, S, Aleksic, A, Aloulah, M, Al-Qudah, M, Alsaleh, S, Baban, MA, Baudoin, T, Balvers, T, Battaglia, P, Bedoya, JD, Beule, A, Bofares, KM, Braverman, I, Brozek-Madry, E, Richard, B, Callejas, C, Carrie, S, Caulley, L, Chussi, D, de Corso, E, Coste, A, El Hadi, U, Elfarouk, A, Eloy, PH, Farrokhi, S, Felisati, G, Ferrari, MD, Fishchuk, R, Grayson, W, Goncalves, PM, Grdinic, B, Grgic, V, Hamizan, AW, Heinichen, JV, Husain, S, Ping, TI, Ivaska, J, Jakimovska, F, Jovancevic, L, Kakande, E, Kamel, R, Karpischenko, S, Kariyawasam, HH, Kawauchi, H, Kjeldsen, A, Klimek, L, Krzeski, A, Kopacheva Barsova, G, Kim, SW, Lal, D, Letort, JJ, Lopatin, A, Mahdjoubi, A, Mesbahi, A, Netkovski, J, Nyenbue Tshipukane, D, Obando-Valverde, A, Okano, M, Onerci, M, Ong, YK, Orlandi, R, Otori, N, Ouennoughy, K, Ozkan, M, Peric, A, Plzak, J, Prokopakis, E, Prepageran, N, Psaltis, A, Pugin, B, Raftopulos, M, Rombaux, P, Riechelmann, H, Sahtout, S, Sarafoleanu, CC, Searyoh, K, Rhee, CS, Shi, J, Shkoukani, M, Shukuryan, AK, Sicak, M, Smyth, D, Sindvongs, K, Soklic Kosak, T, Stjarne, P, Sutikno, B, Steinsvag, S, Tantilipikorn, P, Thanaviratananich, S, Tran, T, Urbancic, J, Valiulius, A, Vasquez de Aparicio, C, Vicheva, D, Virkkula, PM, Vicente, G, Voegels, R, Wagenmann, MM, Wardani, RS, Welge-Lussen, A, Witterick, I, Wright, E, Zabolotniy, D, Zsolt, B, Zwetsloot, CP (2020) European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 58(Suppl S29), 1464. https://doi.org/10.4193/Rhin20.600. PMID: 32077450.Google Scholar
Orlandi, RR, Kingdom, TT, Smith, TL, Bleier, B, DeConde, A, Luong, AU, Poetker, DM, Soler, Z, Welch, KC, Wise, SK, Adappa, N, Alt, JA, Anselmo-Lima, WT, Bachert, C, Baroody, FM, Batra, PS, Bernal-Sprekelsen, M, Beswick, D, Bhattacharyya, N, Chandra, RK, Chang, EH, Chiu, A, Chowdhury, N, Citardi, MJ, Cohen, NA, Conley, DB, DelGaudio, J, Desrosiers, M, Douglas, R, Eloy, JA, Fokkens, WJ, Gray, ST, Gudis, DA, Hamilos, DL, Han, JK, Harvey, R, Hellings, P, Holbrook, EH, Hopkins, C, Hwang, P, Javer, AR, Jiang, RS, Kennedy, D, Kern, R, Laidlaw, T, Lal, D, Lane, A, Lee, HM, Lee, JT, Levy, JM, Lin, SY, Lund, V, McMains, KC, Metson, R, Mullol, J, Naclerio, R, Oakley, G, Otori, N, Palmer, JN, Parikh, SR, Passali, D, Patel, Z, Peters, A, Philpott, C, Psaltis, AJ, Ramakrishnan, VR, Ramanathan, M Jr, Roh, HJ, Rudmik, L, Sacks, R, Schlosser, RJ, Sedaghat, AR, Senior, BA, Sindwani, R, Smith, K, Snidvongs, K, Stewart, M, Suh, JD, Tan, BK, Turner, JH, van Drunen, CM, Voegels, R, Wang, Y, Woodworth, BA, Wormald, PJ, Wright, ED, Yan, C, Zhang, L, Zhou, B (2021) International consensus statement on allergy and rhinology: Rhinosinusitis 2021. International Forum of Allergy & Rhinology 11, 213739. https://doi.org/10.1002/alr.22741.Google Scholar
Arcimowicz, M (2024) Rational treatment of acute rhinosinusitis in the context of increasing antibiotic resistance. Otolaryngologia Polska 78, 111. https://doi.org/10.5604/01.3001.0054.7506.Google Scholar
Perić, A (2022) Acute rhinosinusitis – Pathogenesis, diagnosis and treatment. Galenika Medical Journal 1, 7277. https://doi.org/10.5937/Galmed2201072P [Article in Serbian]Google Scholar
Hoffmans, R, Wagemakers, A, van Drunen, C, Hellings, P, Fokkens, W (2018) Acute and chronic rhinosinusitis and allergic rhinitis in relation to comorbidity, ethnicity, and environment. PLoS One 13, e0192330. https://doi.org/10.1371/journal.pone.0192330.Google Scholar
Sunyecz, I, Hunt, C, Ramadan, HH, Makary, CA (2024) Role of sinonasal anatomic variants in recurrent acute rhinosinusitis. Laryngoscope 134, 34893492. https://doi.org/10.1002/lary.31388.Google Scholar
Salman, FM, Dasgupta, R, Eldeirawi, KM, Nyenhuis, SM, Lee, VS (2023) Associations of community-level particulate matter with high-acuity visit presentation for sinusitis. American Journal of Otolaryngology 44, 103739. https://doi.org/10.1016/j.amjoto.2022.103739.Google Scholar
Günaydın, , Eroğlu, E, Tellioğlu, B, Emiralioğlu, N, Özçelik, HU, Yalçın, E, Doğru, D, Kiper, EN (2023) Evaluation of otorhinolaryngological manifestations in patients with primary ciliary dyskinesia. International Journal of Pediatric Otorhinolaryngology 168, 111520. https://doi.org/10.1016/j.ijporl.2023.111520.Google Scholar
Jaume, F, Valls-Mateus, M, Mullol, J (2020) Common cold and acute rhinosinusitis: Up-to-date management in 2020. Current Allergy and Asthma Reports 20, 28. https://doi.org/10.1007/s11882-020-00917-5.Google Scholar
Mullol, J, Alobid, I, Mariño-Sánchez, F, Izquierdo-Domínguez, A, Marin, C, Klimek, L, Wang, DY, Liu, Z (2020) The loss of smell and taste in the COVID-19 outbreak: A tale of many countries. Current Allergy and Asthma Reports 20, 61. https://doi.org/10.1007/s11882-020-00961-1.Google Scholar
Arcimowicz, M (2021) Acute sinusitis in daily clinical practice. Otolaryngologia Polska 75, 4050. https://doi.org/10.5604/01.3001.0015.2378.Google Scholar
Eccles, R (2011) Mechanisms of the symptoms of rhinosinusitis. Rhinology 49, 131138.Google Scholar
Perić, A (2019) The Use of Herbal Drugs in Therapy of Acute and Chronic Rhinosinusitis. Belgrade, Serbia: Medija Centar Odbrana, pp. 141154. [Textbook in Serbian]Google Scholar
Kolodziej, H (2011) Antimicrobial, antiviral, and immunomodulatory activity studies of pelargonium sidoides (EPs® 7630) in the context of health promotion. Pharmaceuticals (Basel) 4, 12951314. https://doi.org/10.3390/ph4101295.Google Scholar
Brendler, T and van Wyk, BE (2008) A historical, scientific, and commercial perspective on the medicinal use of pelargonium sidoides (Geraniaceae). Journal of Ethnopharmacology 119, 420433. https://doi.org/10.1016/j.jep.2008.07.037.Google Scholar
Bachert, C, Schapowal, A, Funk, P, Kieser, M (2009) Treatment of acute rhinosinusitis with the preparation from pelargonium sidoides EPs 7630: A randomized, double-blind, placebo-controlled trial. Rhinology 47, 5158.Google Scholar
Witte, K, et al. (2015) The pelargonium sidoides extract EPs 7630 drives the innate immune defense by activating selected MAP kinase pathways in human monocytes. PLoS One 10, e0138075. https://doi.org/10.1371/journal.pone.0138075.Google Scholar
Witte, K, Koch, E, Volk, HD, Wolk, K, Sabat, R (2020) The herbal extract EPs® 7630 increases the antimicrobial airway defense through monocyte-dependent induction of IL-22 in T cells. Journal of Molecular Medicine (Berlin, Germany) 98, 14931503. https://doi.org/10.1007/s00109-020-01970-3.Google Scholar
Chen, Y, Geng, Y, Jiang, J, Xiong, G, Lei, C (2023) Smell and taste dysfunction in patients infected with the omicron variant of severe acute respiratory syndrome coronavirus-2. Acta Oto-Laryngologica 143, 489494. https://doi.org/10.1080/00016489.2023.2223243.Google Scholar
Ozer Ozturk, E, Aslan, M, Bayındır, T (2022) The effect of COVID-19 on nasal mucociliary clearance. Acta Oto-Laryngologica 142, 329332. https://doi.org/10.1080/00016489.2022.2048072.Google Scholar
Papies, J, Emanuel, J, Heinemann, N, Kulić, Ž, Schroeder, S, Tenner, B, Lehner, MD, Seifert, G, Müller, MA (2021) Antiviral and immunomodulatory effects of pelargonium sidoides DC. Root extract EPs® 7630 in SARS-CoV-2-infected human lung cells. Frontiers in Pharmacology 12, 757666. https://doi.org/10.3389/fphar.2021.757666.Google Scholar
Perić, A, Vezmar Kovačević, S, Barać, A, Gaćeša, D, Perić, AV, Vojvodić, D (2020) Effects of pelargonium sidoides extract on chemokine levels in nasal secretions of patients with non-purulent acute rhinosinusitis. Journal of Drug Assessment 9, 145150. https://doi.org/10.1080/21556660.2020.1838176.Google Scholar
Thäle, C, Kiderlen, A, Kolodziej, H (2008) Anti-infective mode of action of EPs 7630 at the molecular level. Planta Medica 74, 675681. https://doi.org/10.1055/s-2008-1034324Google Scholar
Jekabsone, A, Sile, I, Cochis, A, Makrecka-Kuka, M, Laucaityte, G, Makarova, E, Rimondini, L, Bernotiene, R, Raudone, L, Vedlugaite, E, Baniene, R, Smalinskiene, A, Savickiene, N, Dambrova, M (2019) Investigation of antibacterial and antiinflammatory activities of proanthocyanidins from pelargonium sidoides DC root extract. Nutrients 11, 2829. https://doi.org/10.3390/nu11112829.Google Scholar
Perić, A, Gaćeša, D, Barać, A, Sotirović, J, Perić, AV (2020) Herbal drug EPs 7630 versus amoxicillin in patients with uncomplicated acute bacterial rhinosinusitis: A randomized, open-label study. The Annals of Otology, Rhinology, and Laryngology 129, 969976. https://doi.org/10.1177/0003489420918266.Google Scholar
Bachert, C (2020) Evidence-based management of acute rhinosinusitis with herbal products. Clinical Phytoscience 6, 85. https://doi.org/10.1186/s40816-020-00231-7.Google Scholar
Perić, A, Vezmar Kovačević, S, Barać, A, Perić, AV, Vojvodić, D (2020) Effects of pelargonium sidoides extract vs roxithromycin on chemokine levels in nasal secretions of patients with uncomplicated acute rhinosinusitis. Laryngoscope Investig Otolaryngol 6, 2533. https://doi.org/10.1002/lio2.514.Google Scholar
da Silva, MF, de Araújo-Júnior, JX, da Silva-Júnior, EF, Heimfarth, L, Martins-Filho, PR, Quintans, JSS, Quintans-Júnior, LJ (2022) Bradykinin-target therapies in SARS-CoV-2 infection: Current evidence and perspectives. Naunyn-Schmiedeberg’s Archives of Pharmacology 395, 275283. https://doi.org/10.1007/s00210-022-02206-6.Google Scholar
van de Veerdonk, FL, Kouijzer, IJE, de Nooijer, AH, van der Hoeven, HG, Maas, C, Netea, MG, Brüggemann, RJM (2020) Outcomes associated with use of a kinin B2 receptor antagonist among patients with COVID-19. JAMA Network Open 3, e2017708. https://doi.org/10.1001/jamanetworkopen.2020.17708.Google Scholar
Xavier-Santos, JB, Passos, JGR, Gomes, JAS, Cruz, JVC, Alves, JSF, Garcia, VB, da Silva, RM, Lopes, NP, Araujo-Junior, RF, Zucolotto, SM, Silva-Junior, AA, Félix-Silva, J, Fernandes-Pedrosa, MF (2022) Topical gel containing phenolic-rich extract from Ipomoea pes-capre leaf (Convolvulaceae) has anti-inflammatory, wound healing, and antiophidic properties. Biomedicine & Pharmacotherapy 149, 112921. https://doi.org/10.1016/j.biopha.2022.112921.Google Scholar
Figure 0

Figure 1. A. Appearance of Pelargonium sidoides plant; B. Appearance of Pelargonium sidoides root; C. Chemical structure of umckalin.

Figure 1

Table 1. Immunomodulatory effects of EPs7630 in the treatment of acute rhinosinusitis

Figure 2

Figure 2. Immunomodulatory effects of EPs7630 in the treatment of APRS. Abbreviations: MCP1: monocyte chemoattractant protein 1; IP10: interferon γ-induced protein 10 kDa; MIP1β: macrophage inflammatory protein 1 beta; IL8: interleukin 8; ENA78: epithelial-derived neutrophil-activating peptide 78; GROα: growth-regulated oncogene alpha; MIP1α: macrophage inflammatory protein alpha; T Ly: T lymphocyte; MF: macrophage; Act. Endot. Cell: activated endothelial cell; Mastocyte: mast cell; NK: natural killer cell.

Figure 3

Figure 3. Immunomodulatory effects of EPs7630 and roxithromycin in therapy of uncomplicated ABRS. MCP1: monocyte chemoattractant protein 1; IP10: interferon γ-induced protein 10 kDa; MIP1β: macrophage inflammatory protein 1 beta; IL8: interleukin 8; ENA78: epithelial-derived neutrophil-activating peptide 78; GROα: growth-regulated oncogene alpha; MIP1α: macrophage inflammatory protein alpha; T Ly: T lymphocyte; MF: macrophage; Mastocyte: mast cell; NK: natural killer cell.