1 Introduction
Throughout this paper, k is a field of characteristic zero.
Noncommutative algebraic geometry
 The Kontsevich–Rosenberg principle of noncommutative algebraic geometry says that a structure on an associative algebra A has a (noncommutative) geometric meaning whenever it induces a genuine corresponding geometric structure on representation spaces. This principle led to the discovery of bisymplectic structures [Reference Crawley-Boevey, Etingof and Ginzburg9], double Poisson and double quasi-Poisson structures [Reference Van den Bergh30], and quasi-bisympletic structures [Reference Van den Bergh31] on smooth algebras such that the associated representation spaces are respectively hamiltonian 
 $GL_n$
-varieties, Poisson and quasi-Poisson
$GL_n$
-varieties, Poisson and quasi-Poisson 
 $GL_n$
-varieties, and quasi-hamiltonian
$GL_n$
-varieties, and quasi-hamiltonian 
 $GL_n$
-varieties.
$GL_n$
-varieties.
 It turns out that the fusion procedure for (quasi-)hamiltonian spaces from [Reference Alekseev, Kosmann-Schwarzbach and Meinrenken1, Reference Alekseev, Malkin and Meinrenken2] has a noncommutative counterpart [Reference Van den Bergh30, Reference Van den Bergh31] (also called fusion). This, in particular, allows for the construction of quasi-bisymplectic structures on (localisations of) path algebras of quivers by starting from several copies of 
 $A_2$
 and repeatedly applying the fusion procedure. Ultimately, this provides a construction of symplectic structures [Reference Yamakawa32] on multiplicative quiver varieties [Reference Crawley-Boevey and Shaw10].
$A_2$
 and repeatedly applying the fusion procedure. Ultimately, this provides a construction of symplectic structures [Reference Yamakawa32] on multiplicative quiver varieties [Reference Crawley-Boevey and Shaw10].

Derived symplectic geometry
Hamiltonian and quasi-hamiltonian spaces actually find a nice interpretation (see [Reference Calaque7, Reference Safronov23]) in the realm of shifted symplectic and lagrangian structures from [Reference Pantev, Toën, Vaquié and Vezzosi21] moment maps as well, as their multiplicative analogs naturally lead to lagrangian morphisms, and both the reduction and the fusion procedures can be understood in terms of derived intersections of these.

Calabi–Yau structures
 More recently, absolute and relative Calabi–Yau structures [Reference Brav and Dyckerhoff5] have turned out to be accurate noncommutative analogs of shifted symplectic and lagrangian structures [Reference Brav and Dyckerhoff6, Reference Toën26], via the moduli of object functor 
 $\mathbf {Perf}$
 from [Reference Toën and Vaquié27].
$\mathbf {Perf}$
 from [Reference Toën and Vaquié27].

 It is therefore natural to wonder whether Calabi–Yau structures are hidden behind the aforementioned (quasi-)bisymplectic ones. More specifically, in our previous work [Reference Bozec, Calaque and Scherotzke3, Reference Bozec, Calaque and Scherotzke4], we constructed relative Calabi–Yau structures on (multiplicative) noncommutative moment maps 
 $k[x^{(\pm 1)}]\to A$
 for (multiplicative) preprojective algebras associated with quivers, leading, in particular, to an alternative construction of symplectic structures on multiplicative quiver varities. Exhibiting a direct connection between Calabi–Yau and (quasi-)bisymplectic structures will then help identify the induced symplectic structures on multiplicative quiver varieties from both approaches.
$k[x^{(\pm 1)}]\to A$
 for (multiplicative) preprojective algebras associated with quivers, leading, in particular, to an alternative construction of symplectic structures on multiplicative quiver varities. Exhibiting a direct connection between Calabi–Yau and (quasi-)bisymplectic structures will then help identify the induced symplectic structures on multiplicative quiver varieties from both approaches.
Results
 In a very satisfactory manner, relative Calabi–Yau structures on noncommutative moment maps do induce (quasi-)bisymplectic ones: the additive version is proved by our first main result (theorem 4.8), and the multiplicative one is given by theorem 5.5. The rough idea in each case is that the Calabi–Yau structure on 
 $k[x^{(\pm 1)}]\to A$
 is given by a family of noncommutative forms
$k[x^{(\pm 1)}]\to A$
 is given by a family of noncommutative forms 
 $\omega _n\in \Omega ^{2n}A$
,
$\omega _n\in \Omega ^{2n}A$
, 
 $n\ge 1$
, satisfying conditions implying the required ones for the
$n\ge 1$
, satisfying conditions implying the required ones for the 
 $2$
-form
$2$
-form 
 $\omega _1$
 to define a (quasi-)bisymplectic structure on A. In particular, non-degeneracy on the Calabi–Yau side implies non-degeneracy on the (quasi-)bisymplectic side.
$\omega _1$
 to define a (quasi-)bisymplectic structure on A. In particular, non-degeneracy on the Calabi–Yau side implies non-degeneracy on the (quasi-)bisymplectic side.
 Moreover, we prove that we retrieve for quivers the very same structures exhibited in [Reference Crawley-Boevey, Etingof and Ginzburg9, Reference Van den Bergh30]: in the additive case in example 4.9, and in a much more involved way in the multiplicative case in section 5.4. This requires work on the elementary 
 $A_2$
 quiver as well as on the correct realization of fusion in the framework of Calabi–Yau cospans. For the latter, we need to prove in section 3 (along with theorem 4.10 and theorem 5.6) that fusion actually corresponds to composition of relative Calabi–Yau structures with a particular Calabi–Yau cospan studied in [Reference Bozec, Calaque and Scherotzke4], the ‘pair-of-pants’ one; that is,
$A_2$
 quiver as well as on the correct realization of fusion in the framework of Calabi–Yau cospans. For the latter, we need to prove in section 3 (along with theorem 4.10 and theorem 5.6) that fusion actually corresponds to composition of relative Calabi–Yau structures with a particular Calabi–Yau cospan studied in [Reference Bozec, Calaque and Scherotzke4], the ‘pair-of-pants’ one; that is, 
 $$\begin{align*}k[x^{(\pm1)}] \amalg k[y^{(\pm1)}] \longrightarrow k\langle x^{(\pm1)} ,y^{{(\pm1)}} \rangle\longleftarrow k[z^{(\pm1)}],\end{align*}$$
$$\begin{align*}k[x^{(\pm1)}] \amalg k[y^{(\pm1)}] \longrightarrow k\langle x^{(\pm1)} ,y^{{(\pm1)}} \rangle\longleftarrow k[z^{(\pm1)}],\end{align*}$$
where z is mapped to 
 $x+y$
 in the additive version, and
$x+y$
 in the additive version, and 
 $xy$
 in the multiplicative one.
$xy$
 in the multiplicative one.

We want to emphasize that section 5 contains what can be understood as the quasi-bisymplectic side of the fusion calculus for double quasi-Poisson algebra [Reference Van den Bergh30, §5.3]. Indeed, we know thanks to [Reference Van den Bergh31] that quasi-bisymplectic structures correspond to non-degenerate double quasi-Poisson ones, and we produce in proposition 5.4 the formula for fusion of quasi-bisymplectic structures, a noncommutative analog of [Reference Alekseev, Kosmann-Schwarzbach and Meinrenken1, Proposition 10.7]. Because of this compatibility, we do not use double quasi-Poisson structures in this paper, but we prove that in the quiver case, the structures we get give back Van den Bergh’s double quasi-Poisson structures from [Reference Van den Bergh30].
The last essential step for completeness is to check that when considering representation spaces, all these constructions yield the same symplectic structures, which is proved by our last main result, theorem 6.1. We prove specifically that the lagrangian structures induced by quasi-Hamiltonian ones thanks to [Reference Van den Bergh30], on the one hand, and by relative Calabi–Yau ones [Reference Brav and Dyckerhoff6], on the other hand, are indeed the same. This achieves the proof of the conjectural program established in the open questions concluding [Reference Bozec, Calaque and Scherotzke4], except the last part, which is rather independent.
Outline of the paper
 In section 2, we recall the mixed structure on the graded vector space of noncommutative differential forms on an associative k-algebra, which yields a convenient construction of Hochschild and negative cyclic homology as shown by Ginzburg–Schedler [Reference Ginzburg and Schedler15]. We consider the example of 
 $A=k[x^{\pm }]$
 and identify the noncommutative differential form that yields the
$A=k[x^{\pm }]$
 and identify the noncommutative differential form that yields the 
 $1$
-Calabi–Yau structure from [Reference Bozec, Calaque and Scherotzke4].
$1$
-Calabi–Yau structure from [Reference Bozec, Calaque and Scherotzke4].
 In section 3, we compare the fusion process introduced by Van den Bergh [Reference Van den Bergh30] with certain pushouts of categories involving the pair-of-pants cospan studied in [Reference Bozec, Calaque and Scherotzke4]. Fusion has been introduced in order to glue idempotents in double (quasi-)Poisson algebras, but in this section, we only focus on the algebra structure and not on double brackets. Along the way, we show that the fusion of a 
 $1$
-smooth (or formally smooth – see definition 3.10) algebra is
$1$
-smooth (or formally smooth – see definition 3.10) algebra is 
 $1$
-smooth.
$1$
-smooth.
The fourth section can be considered as an additive warm-up for the next one. We show that relative Calabi–Yau structures on additive noncommutative moment maps induce bisymplectic structures. Bisymplectic structures were first defined in [Reference Crawley-Boevey, Etingof and Ginzburg9] and are dual to non-degenerate double Poisson structures from [Reference Van den Bergh30]. We introduce, in analogy with Van den Bergh’s fusion of double Poisson structures, the fusion of bisymplectic structures and show that it corresponds to composition with the additive pair-of-pants cospan from [Reference Bozec, Calaque and Scherotzke4]. Furthermore, we show that the fusion process respects the duality between bisymplectic and double Poisson structures in the sense that a compatible pair of bisymplectic and double Poisson structures is sent by fusion to another compatible pair.
In section 5, we prove that relative Calabi–Yau structures on multiplicative noncommutative moment maps induce quasi-bisymplectic structures in the sense of [Reference Van den Bergh31]. Then we prove that the fusion of quasi-bisymplectic structures is induced by the composition of Calabi–Yau cospans with the multiplicative pair-of-pants, and that it is compatible with the duality between quasi-bisymplectic and double quasi-Poisson structures. We also show that in the case of multiplicative quiver varieties, the Calabi–Yau structure exhibited in [Reference Bozec, Calaque and Scherotzke4] is compatible with the non-degenerate double quasi-Poisson structure defined in [Reference Van den Bergh31].
 Finally, in the last section, we study the geometries induced by the aforementioned structures on representation spaces 
 $X_V=\mathrm {Rep}(A,V)$
 of algebras A in vector spaces V. Namely, assuming that we have a Calabi–Yau structure on
$X_V=\mathrm {Rep}(A,V)$
 of algebras A in vector spaces V. Namely, assuming that we have a Calabi–Yau structure on 
 $\coprod _{i\in I}k[x^{\pm 1}] \to \mathcal {C}$
, with
$\coprod _{i\in I}k[x^{\pm 1}] \to \mathcal {C}$
, with 
 $A_{\mathcal {C}}=A$
, we know thanks to [Reference Brav and Dyckerhoff6] that it induces a lagrangian structure on
$A_{\mathcal {C}}=A$
, we know thanks to [Reference Brav and Dyckerhoff6] that it induces a lagrangian structure on 
 $[X_V/\mathrm {GL}_V]\to [\mathrm {GL}_V/\mathrm {GL}_V]$
. We also know that the double quasi-Poisson structure induced by our previous section yields a quasi-Hamiltonian structure on
$[X_V/\mathrm {GL}_V]\to [\mathrm {GL}_V/\mathrm {GL}_V]$
. We also know that the double quasi-Poisson structure induced by our previous section yields a quasi-Hamiltonian structure on 
 $X_V$
 (in the sense of [Reference Alekseev, Malkin and Meinrenken2]), and therefore a lagrangian structure on the very same morphism. We prove that these two lagrangian structures match.
$X_V$
 (in the sense of [Reference Alekseev, Malkin and Meinrenken2]), and therefore a lagrangian structure on the very same morphism. We prove that these two lagrangian structures match.
Related works
A systematic comparison of noncommutative differential forms with Hochschild and cyclic complexes has been achieved by Yeung in [Reference Yeung33]. There, the author uses [Reference Ginzburg and Schedler14], whereas we rely on [Reference Ginzburg and Schedler15]. We should also mention Pridham’s [Reference Pridham22], which presents a systematic way of producing shifted bisymplectic (resp. bilagrangian) structures out of absolute (resp. relative) Calabi–Yau structures (see Proposition 1.24 and Theorem 1.56 in [Reference Pridham22]). One may be able to recover some of the results of the present paper using Pridham’s general theory (but it would probably require as much work as here to derive these results from [Reference Pridham22]).
2 Cyclic and noncommutative de Rham mixed complex
 In this section, we first briefly recall some facts about Hochschild and negative cyclic homology, and then some constructions and results from [Reference Ginzburg and Schedler15]. In particular, in [Reference Ginzburg and Schedler15], Ginzburg and Schedler directly relate the negative cyclic homology of a unital algebra with the cohomology of a complex that is obtained from the mixed complex of noncommutative differential forms [Reference Karoubi17] on this algebra. We finally exhibit a closed noncommutative form representing the class in negative cyclic homology which defines the 
 $1$
-Calabi-Yau structure on
$1$
-Calabi-Yau structure on 
 $k[x^{\pm 1}] $
 in [Reference Bozec, Calaque and Scherotzke4].
$k[x^{\pm 1}] $
 in [Reference Bozec, Calaque and Scherotzke4].
2.1 Hochschild and negative cyclic homology
 We denote by 
 the category of chain complexes over k. We warn the reader that we use the homological grading instead of the cohomological grading used in our previous papers [Reference Bozec, Calaque and Scherotzke3, Reference Bozec, Calaque and Scherotzke4]. In particular, differentials have degree
 the category of chain complexes over k. We warn the reader that we use the homological grading instead of the cohomological grading used in our previous papers [Reference Bozec, Calaque and Scherotzke3, Reference Bozec, Calaque and Scherotzke4]. In particular, differentials have degree 
 $-1$
, whereas mixed differentials have degree
$-1$
, whereas mixed differentials have degree 
 $+1$
. Apart from this change, throughout this paper we borrow the convention and notation from op. cit., to which we refer for more details. For instance, whenever
$+1$
. Apart from this change, throughout this paper we borrow the convention and notation from op. cit., to which we refer for more details. For instance, whenever 
 is a model category, we write
 is a model category, we write 
 $\mathbf {M}$
 for the corresponding
$\mathbf {M}$
 for the corresponding 
 $\infty $
-category obtained by localizing along weak equivalences.
$\infty $
-category obtained by localizing along weak equivalences.
A dg-category is a
 
-enriched category, and the category of dg-categories with dg-functors is denoted by
 
. We refer to [Reference Keller18, Reference Toën24] for a detailed introduction to dg-categories and their homotopy theory. The Hochschild chains 
 $\infty $
-functor is then defined as
$\infty $
-functor is then defined as 

where 
 $\mathcal {C}^e:=\mathcal {C}\otimes \mathcal {C}^{\mathrm {op}}$
. We write
$\mathcal {C}^e:=\mathcal {C}\otimes \mathcal {C}^{\mathrm {op}}$
. We write 
 
for the i-th homology of
 
.
 There is an explicit description of the derived tensor product 
 $\mathcal {C}\underset {\mathcal {C}^e}{\overset {\mathbb {L}}{\otimes }}\mathcal {C}^{\mathrm {op}}$
, which uses the normalized bar resolution of
$\mathcal {C}\underset {\mathcal {C}^e}{\overset {\mathbb {L}}{\otimes }}\mathcal {C}^{\mathrm {op}}$
, which uses the normalized bar resolution of 
 $\mathcal {C}$
 as a
$\mathcal {C}$
 as a 
 $\mathcal {C}$
-bimodule, and that leads to standard normalized Hochschild chains that we denote
$\mathcal {C}$
-bimodule, and that leads to standard normalized Hochschild chains that we denote 
 $\big (C_{*}(\mathcal {C}),b\big )$
:
$\big (C_{*}(\mathcal {C}),b\big )$
: 
 $$\begin{align*}C_{*}(\mathcal{C})=\bigoplus_{\substack{n\geq0 \\ a_0,\dots, a_n\in\mathrm{Ob}(\mathcal{C})}} \mathcal{C}(a_n,a_0){\otimes}\bar{\mathcal{C}}(a_{n-1},a_n){\otimes}\cdots{\otimes} \bar{\mathcal{C}}(a_1,a_2){\otimes} \bar{\mathcal{C}}(a_0,a_1)[-n], \end{align*}$$
$$\begin{align*}C_{*}(\mathcal{C})=\bigoplus_{\substack{n\geq0 \\ a_0,\dots, a_n\in\mathrm{Ob}(\mathcal{C})}} \mathcal{C}(a_n,a_0){\otimes}\bar{\mathcal{C}}(a_{n-1},a_n){\otimes}\cdots{\otimes} \bar{\mathcal{C}}(a_1,a_2){\otimes} \bar{\mathcal{C}}(a_0,a_1)[-n], \end{align*}$$
with 
 $\bar {\mathcal {C}}(a,a')={\mathcal {C}}(a,a')$
 if
$\bar {\mathcal {C}}(a,a')={\mathcal {C}}(a,a')$
 if 
 $a\neq a'$
 and
$a\neq a'$
 and 
 $\bar {\mathcal {C}}(a,a)={\mathcal {C}}(a,a)/k\cdot \mathrm {id}_a$
.
$\bar {\mathcal {C}}(a,a)={\mathcal {C}}(a,a)/k\cdot \mathrm {id}_a$
.
 Hochschild chains carry a mixed structure (i.e., given on the standard normalized model by Connes’s B-operator). We refer to [Reference Bozec, Calaque and Scherotzke3, Reference Bozec, Calaque and Scherotzke4] and references therein for the homotopy theory of mixed complexes and explicit formulas.Footnote 
1
 The negative cyclic complex of 
 , denoted by
, denoted by 
 , is defined as the homotopy fixed points of
, is defined as the homotopy fixed points of 
 with respect to the mixed structure; it comes with a natural transformation
 with respect to the mixed structure; it comes with a natural transformation 
 . In concrete terms,
. In concrete terms, 
 is given by
 is given by 
 $\big (C_{*}(\mathcal {C})[\![u]\!],b-uB\big )$
, where u is a degree
$\big (C_{*}(\mathcal {C})[\![u]\!],b-uB\big )$
, where u is a degree 
 $-2$
 variable.
$-2$
 variable.
 We can view every dg-algebra with a finite set 
 $(e_i)_{i\in I}$
 of orthogonal nonzero idempotents such that
$(e_i)_{i\in I}$
 of orthogonal nonzero idempotents such that 
 $1=\sum _{i\in I}e_i$
 is a dg-category with object set I. Conversely, we can associate to every dg-category
$1=\sum _{i\in I}e_i$
 is a dg-category with object set I. Conversely, we can associate to every dg-category 
 $\mathcal {C}$
 with finitely many objects its path algebra given by the complex
$\mathcal {C}$
 with finitely many objects its path algebra given by the complex 
 $$\begin{align*}A_{\mathcal{C}}:=\bigoplus_{(a, b) \in Ob(\mathcal{C})\times Ob(\mathcal{C})} \mathcal{C}(a, b) \end{align*}$$
$$\begin{align*}A_{\mathcal{C}}:=\bigoplus_{(a, b) \in Ob(\mathcal{C})\times Ob(\mathcal{C})} \mathcal{C}(a, b) \end{align*}$$
with product given by composition of morphisms. The dg-algebra 
 $A_{\mathcal {C}}$
 is an R-algebra, where
$A_{\mathcal {C}}$
 is an R-algebra, where 
 $R=\oplus _{c\in Obj(c)}ke_c$
. Note that the construction is in general not functorial, meaning that a functor does not necessarily give a morphism between the corresponding dg-algebras (unless the functor is injective on objects). This can be seen very easily in the following example, which will play an important role in the next section.
$R=\oplus _{c\in Obj(c)}ke_c$
. Note that the construction is in general not functorial, meaning that a functor does not necessarily give a morphism between the corresponding dg-algebras (unless the functor is injective on objects). This can be seen very easily in the following example, which will play an important role in the next section.
Example 2.1. The dg-category coproduct 
 $k\coprod k$
 is the dg-category given by two objects
$k\coprod k$
 is the dg-category given by two objects 
 $1$
 and
$1$
 and 
 $2$
 and endomorphism ring
$2$
 and endomorphism ring 
 $k=\mathrm {End}(1)$
 respectively
$k=\mathrm {End}(1)$
 respectively 
 $k=\mathrm {End}(2)$
 at each object, but zero Hom-spaces between the two objects. Hence, its path algebra
$k=\mathrm {End}(2)$
 at each object, but zero Hom-spaces between the two objects. Hence, its path algebra 
 $A_{ k \coprod k}$
 is isomorphic to
$A_{ k \coprod k}$
 is isomorphic to 
 $k \oplus k$
. There is a dg-functor
$k \oplus k$
. There is a dg-functor 
 $$\begin{align*}k \coprod k \to k \end{align*}$$
$$\begin{align*}k \coprod k \to k \end{align*}$$
sending 
 $1$
 and
$1$
 and 
 $2$
 to
$2$
 to 
 $pt$
, which denotes the only object of k, but there is no map of k-linear dg-algebras
$pt$
, which denotes the only object of k, but there is no map of k-linear dg-algebras 
 $ k \oplus k \to k$
.
$ k \oplus k \to k$
.
 Nevertheless, 
 $\mathcal {C}$
 and
$\mathcal {C}$
 and 
 $A_{\mathcal {C}}$
 are Morita equivalent, so that their Hochschild (resp. negative cyclic) homology is isomorphic. More precisely, we have an inclusion of mixed complexes
$A_{\mathcal {C}}$
 are Morita equivalent, so that their Hochschild (resp. negative cyclic) homology is isomorphic. More precisely, we have an inclusion of mixed complexes 
 $\big (C_{*}(\mathcal {C}),b,B\big )\hookrightarrow \big (C_{*}(A_{\mathcal {C}}),b,B\big )$
, which is a weak equivalence (here, we view
$\big (C_{*}(\mathcal {C}),b,B\big )\hookrightarrow \big (C_{*}(A_{\mathcal {C}}),b,B\big )$
, which is a weak equivalence (here, we view 
 $A_{\mathcal {C}}$
 as a dg-category with one object).
$A_{\mathcal {C}}$
 as a dg-category with one object).
2.2 Noncommutative forms
 Consider a unital associative k-algebra A, along with a subalgebra R. We fix a complementary subspace 
 $\bar A\simeq A/R$
 of R. Denote by
$\bar A\simeq A/R$
 of R. Denote by 
 $d:A\to \bar A$
 the associated quotient map. We will systematically use the
$d:A\to \bar A$
 the associated quotient map. We will systematically use the 
 $\bar {~}$
 notation for the quotient by R. The graded algebra
$\bar {~}$
 notation for the quotient by R. The graded algebra 
 $\Omega _R^* A$
 of noncommutative differential forms is defined as the quotient of
$\Omega _R^* A$
 of noncommutative differential forms is defined as the quotient of 
 $T_R(A\oplus \bar A[-1])$
 by the relations
$T_R(A\oplus \bar A[-1])$
 by the relations 
 $$\begin{align*}a\otimes b=ab\qquad\text{and}\qquad d(ab)=a\otimes d(b)+d(a)\otimes b \end{align*}$$
$$\begin{align*}a\otimes b=ab\qquad\text{and}\qquad d(ab)=a\otimes d(b)+d(a)\otimes b \end{align*}$$
for every 
 $a,b\in A$
. It comes equipped with a mixed differential, that is the derivation induced by d and that we denote by the same symbol. The mixed differential d, descends to the Karoubi–de Rham graded vector space
$a,b\in A$
. It comes equipped with a mixed differential, that is the derivation induced by d and that we denote by the same symbol. The mixed differential d, descends to the Karoubi–de Rham graded vector space 
 $\mathrm {DR}^*_R A:=\Omega ^*_R A/[\Omega ^*_R A,\Omega ^*_R A]$
, first introduced in [Reference Karoubi17].
$\mathrm {DR}^*_R A:=\Omega ^*_R A/[\Omega ^*_R A,\Omega ^*_R A]$
, first introduced in [Reference Karoubi17].
 In order to define a differential on 
 $\Omega ^*_R A$
, turning it into a mixed complex, we consider the distinguished double derivation
$\Omega ^*_R A$
, turning it into a mixed complex, we consider the distinguished double derivation 
 $E:a\mapsto a\otimes 1-1\otimes a$
, denoted by
$E:a\mapsto a\otimes 1-1\otimes a$
, denoted by 
 $\Delta $
 in [Reference Crawley-Boevey, Etingof and Ginzburg9]. Recall that the A-bimodule of (R-linear) double derivations is defined as
$\Delta $
 in [Reference Crawley-Boevey, Etingof and Ginzburg9]. Recall that the A-bimodule of (R-linear) double derivations is defined as 
 $$\begin{align*}D_{A/R}:=\mathrm{Der}_R(A,A\otimes A)\simeq \Omega_R^1 A^{\vee}, \end{align*}$$
$$\begin{align*}D_{A/R}:=\mathrm{Der}_R(A,A\otimes A)\simeq \Omega_R^1 A^{\vee}, \end{align*}$$
where the derivations are taken with respect to the outer A-bimodule structure on 
 $A\otimes A$
, and the remaining A-bimodule structure on
$A\otimes A$
, and the remaining A-bimodule structure on 
 $D_{A/R}$
 comes from the inner one on
$D_{A/R}$
 comes from the inner one on 
 $A\otimes A$
. Here,
$A\otimes A$
. Here, 
 $\Omega _R^1A$
 is the kernel of the multiplication
$\Omega _R^1A$
 is the kernel of the multiplication 
 $A\otimes _R A\to A$
 and inherits its A-bimodule structure from the outer one on
$A\otimes _R A\to A$
 and inherits its A-bimodule structure from the outer one on 
 $A\otimes A$
; it is isomorphic to
$A\otimes A$
; it is isomorphic to 
 $A\otimes _R\bar A$
 as a left A-module (
$A\otimes _R\bar A$
 as a left A-module (
 $1\otimes da\in A\otimes _R\bar A$
 being identified with
$1\otimes da\in A\otimes _R\bar A$
 being identified with 
 $E(a)\in \Omega _R^1A$
). As a matter of notation, we will often write
$E(a)\in \Omega _R^1A$
). As a matter of notation, we will often write 
 $\Omega _{A/R}:=\Omega _R^1 A$
.
$\Omega _{A/R}:=\Omega _R^1 A$
.
 There is an obvious graded algebra isomorphism 
 $\Omega ^*_R A\simeq T_A(\Omega _R^1A[-1])$
, as well as a left A-module isomorphism
$\Omega ^*_R A\simeq T_A(\Omega _R^1A[-1])$
, as well as a left A-module isomorphism 
 $\Omega _R^n A\simeq A\otimes _R\bar A^{\otimes _R n}$
 (see [Reference Cuntz and Quillen11]). For later purposes, we also introduce the graded algebra of polyvector fields
$\Omega _R^n A\simeq A\otimes _R\bar A^{\otimes _R n}$
 (see [Reference Cuntz and Quillen11]). For later purposes, we also introduce the graded algebra of polyvector fields 
 $D^*_RA=T_A(D_{A/R}[-1])$
 from [Reference Van den Bergh30].
$D^*_RA=T_A(D_{A/R}[-1])$
 from [Reference Van den Bergh30].
 Following [Reference Crawley-Boevey, Etingof and Ginzburg9], we define, for any R-linear double derivation 
 $\delta \in D_{A/R}$
 of A, a graded double derivation
$\delta \in D_{A/R}$
 of A, a graded double derivation 
 $$\begin{align*}i_{\delta}:\Omega^*_R A\rightarrow \Omega^*_R A \otimes \Omega^*_R A \end{align*}$$
$$\begin{align*}i_{\delta}:\Omega^*_R A\rightarrow \Omega^*_R A \otimes \Omega^*_R A \end{align*}$$
of 
 $\Omega ^*_R A$
 by setting
$\Omega ^*_R A$
 by setting 
 $$\begin{align*}i_{\delta}(a):=0\qquad \mathrm{and}\qquad i_{\delta}(da):=\delta(a) \end{align*}$$
$$\begin{align*}i_{\delta}(a):=0\qquad \mathrm{and}\qquad i_{\delta}(da):=\delta(a) \end{align*}$$
for any 
 $a\in A$
. On
$a\in A$
. On 
 $\Omega _R^2A$
, we thus have, for instance,
$\Omega _R^2A$
, we thus have, for instance, 
 $$\begin{align*}i_{\delta}(pdqdr)=p\delta(q)'\otimes\delta(q)"dr-pdq\delta(r)'\otimes\delta(r)"\in A\otimes\Omega_R^1A+\Omega_R^1A\otimes A, \end{align*}$$
$$\begin{align*}i_{\delta}(pdqdr)=p\delta(q)'\otimes\delta(q)"dr-pdq\delta(r)'\otimes\delta(r)"\in A\otimes\Omega_R^1A+\Omega_R^1A\otimes A, \end{align*}$$
where we use Sweedler’s sumless notation 
 $\delta (a)=\delta (a)'\otimes \delta (a)"$
. The graded double derivation
$\delta (a)=\delta (a)'\otimes \delta (a)"$
. The graded double derivation 
 $i_{\delta }$
 induces a linear contraction operator
$i_{\delta }$
 induces a linear contraction operator 
 $$\begin{align*}\iota_{\delta}:={}^{\circ} i_{\delta}:\Omega_R^* A\rightarrow\Omega_R ^{*-1}A, \end{align*}$$
$$\begin{align*}\iota_{\delta}:={}^{\circ} i_{\delta}:\Omega_R^* A\rightarrow\Omega_R ^{*-1}A, \end{align*}$$
where 
 ${}^{\circ }(\alpha \otimes \beta )=(-1)^{kl}\beta \otimes \alpha $
 for
${}^{\circ }(\alpha \otimes \beta )=(-1)^{kl}\beta \otimes \alpha $
 for 
 $\alpha \otimes \beta \in \Omega _R^kA\otimes \Omega _R^lA$
. Our differential will be given by the contraction operator
$\alpha \otimes \beta \in \Omega _R^kA\otimes \Omega _R^lA$
. Our differential will be given by the contraction operator 
 $\iota _E:\Omega _R^* A\to \Omega _R ^{*-1}A$
, which has the following properties thanks to [Reference Crawley-Boevey, Etingof and Ginzburg9, Lemma 3.1.1]: it is explicitly given by the formula
$\iota _E:\Omega _R^* A\to \Omega _R ^{*-1}A$
, which has the following properties thanks to [Reference Crawley-Boevey, Etingof and Ginzburg9, Lemma 3.1.1]: it is explicitly given by the formula 
 $$\begin{align*}\iota_E(a_0da_1\dots da_n)=\sum_{l=1}^n(-1)^{(l-1)(n-1)+1}[a_l,da_{l+1}\dots da_na_0da_1\dots da_{l-1}]. \end{align*}$$
$$\begin{align*}\iota_E(a_0da_1\dots da_n)=\sum_{l=1}^n(-1)^{(l-1)(n-1)+1}[a_l,da_{l+1}\dots da_na_0da_1\dots da_{l-1}]. \end{align*}$$
It vanishes on 
 $[\Omega ^*_RA,\Omega ^*_RA]$
 (and thus factors though
$[\Omega ^*_RA,\Omega ^*_RA]$
 (and thus factors though 
 $\mathrm {DR}_R^* A$
), and it takes vales in
$\mathrm {DR}_R^* A$
), and it takes vales in 
 $[\Omega ^*_RA,\Omega ^*_RA]^R$
 (in particular,
$[\Omega ^*_RA,\Omega ^*_RA]^R$
 (in particular, 
 $\iota _E^2=0$
), and
$\iota _E^2=0$
), and 
 $[\iota _E,d]=0$
. As a consequence, we obtain that
$[\iota _E,d]=0$
. As a consequence, we obtain that 
 $\big (\Omega ^*_RA,\iota _E,d)$
 is a mixed complex.
$\big (\Omega ^*_RA,\iota _E,d)$
 is a mixed complex.
2.3 Hochschild chains versus noncommutative forms
Below, we rephrase some constructions and results of [Reference Ginzburg and Schedler15] in terms of mixed complexes. Beware that the notation used here is not exactly the same as in op. cit.. For the moment, we only assume that A is a k-algebra.
 Through the identification 
 $C_*(A)\simeq \Omega ^*_kA$
, the Hochschild differential b reads as
$C_*(A)\simeq \Omega ^*_kA$
, the Hochschild differential b reads as 
 $$\begin{align*}b(\alpha da)=(-1)^{|\alpha|}[\alpha,a]. \end{align*}$$
$$\begin{align*}b(\alpha da)=(-1)^{|\alpha|}[\alpha,a]. \end{align*}$$
The Karoubi operator on 
 $\Omega _k^* A$
, given by
$\Omega _k^* A$
, given by 
 $$\begin{align*}\kappa(\alpha da)=(-1)^{|\alpha|}da\alpha, \end{align*}$$
$$\begin{align*}\kappa(\alpha da)=(-1)^{|\alpha|}da\alpha, \end{align*}$$
allows one to define a harmonic decomposition 
 $\bar \Omega _k^* A=P\bar \Omega _k^* A\oplus P^{\perp }\bar \Omega _k^*A$
, where
$\bar \Omega _k^* A=P\bar \Omega _k^* A\oplus P^{\perp }\bar \Omega _k^*A$
, where 
 $$\begin{align*}P\bar\Omega_k^* A=\ker(1-\kappa)^2\qquad\text{and}\qquad P^{\perp}\bar\Omega_k^*A=\mathrm{ima}(1-\kappa)^2.\end{align*}$$
$$\begin{align*}P\bar\Omega_k^* A=\ker(1-\kappa)^2\qquad\text{and}\qquad P^{\perp}\bar\Omega_k^*A=\mathrm{ima}(1-\kappa)^2.\end{align*}$$
The following identites hold:
 $$\begin{align*}\iota_E=bN|_P\qquad\text{and}\qquad B=Nd|_P, \end{align*}$$
$$\begin{align*}\iota_E=bN|_P\qquad\text{and}\qquad B=Nd|_P, \end{align*}$$
where N is the grading operator and B is the Connes mixed differential.
Hence, we have the following chain of morphisms of mixed complexes

such that, according to [Reference Ginzburg and Schedler15], 
 $\overline {[d\Omega _k^*A,d\Omega _k^*A]}\hookrightarrow (\ker (P)[\![u]\!],\iota _E-ud)$
 is a quasi-isomorphism, where u is a degree
$\overline {[d\Omega _k^*A,d\Omega _k^*A]}\hookrightarrow (\ker (P)[\![u]\!],\iota _E-ud)$
 is a quasi-isomorphism, where u is a degree 
 $-2$
 formal variable,
$-2$
 formal variable, 
 $N!$
 is an isomorphism and the rightmost inclusion is a quasi-isomorphism. We thus get a quasi-isomorphism
$N!$
 is an isomorphism and the rightmost inclusion is a quasi-isomorphism. We thus get a quasi-isomorphism 
 $$\begin{align*}\left(\dfrac{\bar\Omega_k^* A[\![u]\!]}{\overline{[d\Omega_k^*A,d\Omega_k^*A]}},\iota_E-ud\right) \longrightarrow (\bar\Omega_RA[\![u]\!],b-uB), \end{align*}$$
$$\begin{align*}\left(\dfrac{\bar\Omega_k^* A[\![u]\!]}{\overline{[d\Omega_k^*A,d\Omega_k^*A]}},\iota_E-ud\right) \longrightarrow (\bar\Omega_RA[\![u]\!],b-uB), \end{align*}$$
and the homology of both complexes yields the reduced negative cyclic homology 
 $\overline {\mathrm {HC}}^-(A)$
.
$\overline {\mathrm {HC}}^-(A)$
.
 Hence, when 
 $A=A_{\mathcal {C}}$
, for
$A=A_{\mathcal {C}}$
, for 
 $\mathcal {C}$
 a genuine k-linear category with a finite set I of objects, and
$\mathcal {C}$
 a genuine k-linear category with a finite set I of objects, and 
 $R=\oplus _{i\in I}ke_i$
, we have a zig-zag
$R=\oplus _{i\in I}ke_i$
, we have a zig-zag 

where only the last bottom arrow may not be a quasi-isomorphism.
2.4 Computations for 
 $A=k[x^{\pm 1}]$
$A=k[x^{\pm 1}]$
 As a matter of convention, we always mean 
 $(dx)y$
 if no brackets appear in
$(dx)y$
 if no brackets appear in 
 $dxy$
. We want to find a harmonic cyclic lift for
$dxy$
. We want to find a harmonic cyclic lift for 
 $\alpha _1:=x^{-1}dx\in \bar \Omega ^1A$
 which is closed for the mixed structure
$\alpha _1:=x^{-1}dx\in \bar \Omega ^1A$
 which is closed for the mixed structure 
 $(P\bar \Omega ,\iota _E,d)$
. That means that A is
$(P\bar \Omega ,\iota _E,d)$
. That means that A is 
 $1$
-pre-Calabi–Yau according to the terminology of [Reference Bozec, Calaque and Scherotzke3]. This was already proved in [Reference Bozec, Calaque and Scherotzke4] using the standard normalized Hochschild complex, but we reprove it here on the ‘de Rham side’ and check consistency afterwards to illustrate (2.1).
$1$
-pre-Calabi–Yau according to the terminology of [Reference Bozec, Calaque and Scherotzke3]. This was already proved in [Reference Bozec, Calaque and Scherotzke4] using the standard normalized Hochschild complex, but we reprove it here on the ‘de Rham side’ and check consistency afterwards to illustrate (2.1).
 Set 
 $\alpha _n=(x^{-1}dx)^{2n-1},\beta _n=\kappa (\alpha _n)=(dxx^{-1})^{2n-1}\in \bar \Omega ^{2n-1}A$
. Then
$\alpha _n=(x^{-1}dx)^{2n-1},\beta _n=\kappa (\alpha _n)=(dxx^{-1})^{2n-1}\in \bar \Omega ^{2n-1}A$
. Then 
 $$\begin{align*}\kappa(\beta_n)=\kappa(-\beta_{n-1}dxdx^{-1})=-dx^{-1}\beta_{n-1}dx=\alpha_n.\end{align*}$$
$$\begin{align*}\kappa(\beta_n)=\kappa(-\beta_{n-1}dxdx^{-1})=-dx^{-1}\beta_{n-1}dx=\alpha_n.\end{align*}$$
Hence, 
 $\alpha _n+\beta _n\in P\bar \Omega A$
 and
$\alpha _n+\beta _n\in P\bar \Omega A$
 and 
 $\alpha _n-\beta _n=\frac {1}{2}(1-\kappa )^2(\alpha _{n})\in P^{\perp }\bar \Omega A$
. Then
$\alpha _n-\beta _n=\frac {1}{2}(1-\kappa )^2(\alpha _{n})\in P^{\perp }\bar \Omega A$
. Then 
 $$ \begin{align*} \iota_E\alpha_n&=\frac{1}{2}(2n-1)b(\alpha_n+\beta_n)\\ &=\frac{1}{2}(2n-1)([\alpha_{n-1}x^{-1}dxx^{-1},x]-[\beta_{n-1}dx,x^{-1}])\\ &=\frac{1}{2}(2n-1)(x^{-1}\beta_{n-1}dx+\alpha_{n-1}x^{-1}dx-\beta_{n-1}dxx^{-1}-x\alpha_{n-1}x^{-1}dxx^{-1})\\ &=(2n-1)((x^{-1}dx)^{2n-2}-(dxx^{-1})^{2n-2}). \end{align*} $$
$$ \begin{align*} \iota_E\alpha_n&=\frac{1}{2}(2n-1)b(\alpha_n+\beta_n)\\ &=\frac{1}{2}(2n-1)([\alpha_{n-1}x^{-1}dxx^{-1},x]-[\beta_{n-1}dx,x^{-1}])\\ &=\frac{1}{2}(2n-1)(x^{-1}\beta_{n-1}dx+\alpha_{n-1}x^{-1}dx-\beta_{n-1}dxx^{-1}-x\alpha_{n-1}x^{-1}dxx^{-1})\\ &=(2n-1)((x^{-1}dx)^{2n-2}-(dxx^{-1})^{2n-2}). \end{align*} $$
However, 
 $d\alpha _1=-(x^{-1}dx)^2$
, and if we assume
$d\alpha _1=-(x^{-1}dx)^2$
, and if we assume 
 $d\alpha _{n-1}=-(x^{-1}dx)^{2n-2}$
, we get
$d\alpha _{n-1}=-(x^{-1}dx)^{2n-2}$
, we get 
 $$ \begin{align*} d\alpha_n&=d(x^{-1}dx(x^{-1}dx)^{2n-2})\\ &=d(x^{-1}dx)(x^{-1}dx)^{2n-2}-x^{-1}dxd((x^{-1}dx)^{2n-2})\\ &=-x^{-1}dxx^{-1}dx(x^{-1}dx)^{2n-2}-x^{-1}dxd^2\alpha_{n-1}\\ &=-(x^{-1}dx)^{2n}. \end{align*} $$
$$ \begin{align*} d\alpha_n&=d(x^{-1}dx(x^{-1}dx)^{2n-2})\\ &=d(x^{-1}dx)(x^{-1}dx)^{2n-2}-x^{-1}dxd((x^{-1}dx)^{2n-2})\\ &=-x^{-1}dxx^{-1}dx(x^{-1}dx)^{2n-2}-x^{-1}dxd^2\alpha_{n-1}\\ &=-(x^{-1}dx)^{2n}. \end{align*} $$
Similarly, 
 $d\beta _n=(dxx^{-1})^{2n}$
 for all n. Thus, as
$d\beta _n=(dxx^{-1})^{2n}$
 for all n. Thus, as 
 $\iota _E\alpha _n=\iota _E\beta _n$
,
$\iota _E\alpha _n=\iota _E\beta _n$
, 
 $$\begin{align*}\iota_E(\alpha_n+\beta_n)=2\iota_E\alpha_n=-2(2n-1)d(\beta_{n-1}+\alpha_{n-1}).\end{align*}$$
$$\begin{align*}\iota_E(\alpha_n+\beta_n)=2\iota_E\alpha_n=-2(2n-1)d(\beta_{n-1}+\alpha_{n-1}).\end{align*}$$
As a consequence, 
 $(\iota _E-ud)(\gamma )=0$
, where
$(\iota _E-ud)(\gamma )=0$
, where 
 $\gamma _k=\frac {1}{2}(\alpha _k+\beta _k)\in P\bar \Omega ^{2k-1}k[x^{\pm 1}]$
 and
$\gamma _k=\frac {1}{2}(\alpha _k+\beta _k)\in P\bar \Omega ^{2k-1}k[x^{\pm 1}]$
 and 
 $$\begin{align*}\gamma=\sum_{k\ge0}\dfrac{k!}{(2k+1)!}(-u)^k\gamma_{k+1},\end{align*}$$
$$\begin{align*}\gamma=\sum_{k\ge0}\dfrac{k!}{(2k+1)!}(-u)^k\gamma_{k+1},\end{align*}$$
where u is a formal degree 
 $-2$
 variable.
$-2$
 variable.
 Let us check now that this is coherent with [Reference Bozec, Calaque and Scherotzke4]. Through (2.1) and the isomorphism 
 $\Omega ^nA\simeq A\otimes \bar A^{\otimes n}$
,
$\Omega ^nA\simeq A\otimes \bar A^{\otimes n}$
, 
 $\gamma $
 is mapped to
$\gamma $
 is mapped to 
 $$\begin{align*}\sum_{k\ge0}{k!}u^k\dfrac{(x^{-1}\otimes x)^{\otimes(k+1)}-(x\otimes x^{-1})^{\otimes(k+1)}}{2}\end{align*}$$
$$\begin{align*}\sum_{k\ge0}{k!}u^k\dfrac{(x^{-1}\otimes x)^{\otimes(k+1)}-(x\otimes x^{-1})^{\otimes(k+1)}}{2}\end{align*}$$
as
 $$ \begin{align*} \alpha_{k+1}&=(x^{-1}dx)^{2k+1}=(-1)^kx^{-1}(dxdx^{-1})^kdx,\\ \beta_{k+1}&=(dxx^{-1})^{2k+1}=(-1)^{k+1}x(dx^{-1}dx)^kdx^{-1},\\ \text{and }\gamma_{k+1}&\in P\bar\Omega^{2k+1}, \end{align*} $$
$$ \begin{align*} \alpha_{k+1}&=(x^{-1}dx)^{2k+1}=(-1)^kx^{-1}(dxdx^{-1})^kdx,\\ \beta_{k+1}&=(dxx^{-1})^{2k+1}=(-1)^{k+1}x(dx^{-1}dx)^kdx^{-1},\\ \text{and }\gamma_{k+1}&\in P\bar\Omega^{2k+1}, \end{align*} $$
all of which is consistent with [Reference Bozec, Calaque and Scherotzke4, 3.1.1].
3 Fusion
In this section, we compare certain pushouts of k-linear dg-categories with the fusion formalism introduced by Van den Bergh [Reference Van den Bergh30] for algebras. Fusion is a process which glues two pairwise orthogonal idempotents into one. Given an algebra with a double (quasi-)Poisson structure, the new algebra obtained by fusion inherits a double (quasi-)Poisson structure from the original one as shown in [Reference Van den Bergh30, Reference Fairon12].
This will be relevant in the next sections, where we will compare fusion of bisymplectic and quasi-bisymplectic structures with compositions of Calabi–Yau cospans.
3.1 Fusion as a pushout
 Recall that Van den Bergh defines in [Reference Van den Bergh30] the fusion algebra which identifies two pairwise orthogonal idempotents. We use the notation 
 $(-)^+$
 instead of
$(-)^+$
 instead of 
 $\overline {(-)}$
 as in [Reference Van den Bergh30] since it is already used.
$\overline {(-)}$
 as in [Reference Van den Bergh30] since it is already used.
Definition 3.1. Let 
 $R= ke_1 \oplus \cdots \oplus k e_n$
 be a semi-simple algebra with pairwise orthogonal idempotents
$R= ke_1 \oplus \cdots \oplus k e_n$
 be a semi-simple algebra with pairwise orthogonal idempotents 
 $e_i$
, and A an R-algebra. Set
$e_i$
, and A an R-algebra. Set 
 $\mu =1-e_1-e_2$
 and
$\mu =1-e_1-e_2$
 and 
 $\epsilon =1-e_2$
. Then the fusion algebra
$\epsilon =1-e_2$
. Then the fusion algebra 
 $A^f$
 is defined as
$A^f$
 is defined as 
 $\epsilon {A}^+ \epsilon $
, where
$\epsilon {A}^+ \epsilon $
, where 
 ${A}^+:= A \coprod _{ke_1\oplus ke_2\oplus k\mu } (M_2(k) \oplus k\mu )$
. Here,
${A}^+:= A \coprod _{ke_1\oplus ke_2\oplus k\mu } (M_2(k) \oplus k\mu )$
. Here, 
 $M_2(k)$
 denotes the
$M_2(k)$
 denotes the 
 $(ke_1\oplus ke_2)$
-algebra of
$(ke_1\oplus ke_2)$
-algebra of 
 $2\times 2$
 matrices, and the idempotent
$2\times 2$
 matrices, and the idempotent 
 $e_i$
 is sent to
$e_i$
 is sent to 
 $e_{ii}$
, where
$e_{ii}$
, where 
 $e_{i j}$
’s are matrix units.
$e_{i j}$
’s are matrix units.
 One can see that 
 ${A}^+$
 is isomorphic to
${A}^+$
 is isomorphic to 
 $A \coprod _{R} {R^+}$
 and that
$A \coprod _{R} {R^+}$
 and that 
 $R^+=M_2(k)\oplus R_{\geq 3}$
 and
$R^+=M_2(k)\oplus R_{\geq 3}$
 and 
 $R^f=ke_1\oplus R_{\geq 3}$
, where
$R^f=ke_1\oplus R_{\geq 3}$
, where 
 $R_{\geq 3}:=ke_3\oplus \cdots \oplus ke_n$
.
$R_{\geq 3}:=ke_3\oplus \cdots \oplus ke_n$
.
 Now, let 
 $\mathcal {C}$
 be a dg-category with a finite set of objects
$\mathcal {C}$
 be a dg-category with a finite set of objects 
 $I=\{1,\dots ,n\}$
,
$I=\{1,\dots ,n\}$
, 
 $n\ge 2$
. We define
$n\ge 2$
. We define 
 $$\begin{align*}\mathcal{C}^f:=\mathcal{C} \coprod_{k\coprod k} k, \end{align*}$$
$$\begin{align*}\mathcal{C}^f:=\mathcal{C} \coprod_{k\coprod k} k, \end{align*}$$
where the functor 
 $k\coprod k\to \mathcal {C}$
 is given by the units of the first two objects
$k\coprod k\to \mathcal {C}$
 is given by the units of the first two objects 
 $1$
 and
$1$
 and 
 $2$
. Note that the strict pushout is (categorically equivalent to) a homotopy pushout.
$2$
. Note that the strict pushout is (categorically equivalent to) a homotopy pushout.
Examples 3.2. (1) The category 
 $(k[x]\amalg k[y])^f$
 (when defined using the strict pushout) is isomorphic to
$(k[x]\amalg k[y])^f$
 (when defined using the strict pushout) is isomorphic to 
 $k\langle x,y\rangle $
. Similarly,
$k\langle x,y\rangle $
. Similarly, 
 $(k[x^{\pm 1}]\amalg k[y^{\pm 1}])^f$
 is isomorphic
$(k[x^{\pm 1}]\amalg k[y^{\pm 1}])^f$
 is isomorphic 
 $k\langle x^{\pm },y^{\pm 1} \rangle $
. As a consequence, we get that
$k\langle x^{\pm },y^{\pm 1} \rangle $
. As a consequence, we get that 
 $$\begin{align*}\mathcal{C}^f\simeq \mathcal{C} \coprod_{k[x_1^{\square}] \coprod k[x_2^{\square}]} k\langle x_1^{\square},x_2^{\square} \rangle, \end{align*}$$
$$\begin{align*}\mathcal{C}^f\simeq \mathcal{C} \coprod_{k[x_1^{\square}] \coprod k[x_2^{\square}]} k\langle x_1^{\square},x_2^{\square} \rangle, \end{align*}$$
where 
 $\square \in \{\emptyset ,\pm 1\}$
 and
$\square \in \{\emptyset ,\pm 1\}$
 and 
 $k[x_i^{\square }] \to \mathrm {End}_{\mathcal {C}}(i)$
.
$k[x_i^{\square }] \to \mathrm {End}_{\mathcal {C}}(i)$
.
 (2) If 
 $\mathcal R= \coprod _{i\in I} k$
, then
$\mathcal R= \coprod _{i\in I} k$
, then 
 $\mathcal R^f= k \amalg \mathcal R_{\geq 3}$
, where
$\mathcal R^f= k \amalg \mathcal R_{\geq 3}$
, where 
 $\mathcal R_{\geq 3}:=\coprod _{i\geq 3} k$
. As a consequence, we get that
$\mathcal R_{\geq 3}:=\coprod _{i\geq 3} k$
. As a consequence, we get that 
 $$\begin{align*}\mathcal{C}^f:=\mathcal{C} \coprod_{\mathcal R} \big( k\amalg \mathcal R_{\ge3}\big), \end{align*}$$
$$\begin{align*}\mathcal{C}^f:=\mathcal{C} \coprod_{\mathcal R} \big( k\amalg \mathcal R_{\ge3}\big), \end{align*}$$
where the functor 
 $\mathcal R \rightarrow \mathcal {C}$
 is uniquely determined by mapping the object of the i-th copy of k to i, and the functor
$\mathcal R \rightarrow \mathcal {C}$
 is uniquely determined by mapping the object of the i-th copy of k to i, and the functor 
 $\mathcal R \to k\amalg \mathcal R_{\ge 3}$
 maps the first two objects of
$\mathcal R \to k\amalg \mathcal R_{\ge 3}$
 maps the first two objects of 
 $\mathcal R$
 to the object of the first copy of k.
$\mathcal R$
 to the object of the first copy of k.
Proposition 3.3. Let 
 $\mathcal {C}$
 be a k-linear dg-category with set of objects I. Then
$\mathcal {C}$
 be a k-linear dg-category with set of objects I. Then 
 $A_{\mathcal {C}^f}$
 is isomorphic to
$A_{\mathcal {C}^f}$
 is isomorphic to 
 $ (A_{\mathcal {C}})^f$
.
$ (A_{\mathcal {C}})^f$
.
Proof. We can assume without loss of generality that 
 $\mathcal {C}$
 has only two objects
$\mathcal {C}$
 has only two objects 
 $1$
 and
$1$
 and 
 $2$
. We denote
$2$
. We denote 
 $e_1$
 and
$e_1$
 and 
 $e_2$
 their respective identity map. The dg-category
$e_2$
 their respective identity map. The dg-category 
 $\mathcal {C} \coprod _{k\coprod k} k$
 has exactly one object which we denote
$\mathcal {C} \coprod _{k\coprod k} k$
 has exactly one object which we denote 
 $pt$
. Let us show that the endomorphism ring
$pt$
. Let us show that the endomorphism ring 
 $B:=\mathrm {End}(pt)$
 is isomorphic to the fusion algebra
$B:=\mathrm {End}(pt)$
 is isomorphic to the fusion algebra 
 $A^f$
 of
$A^f$
 of 
 $A:=A_{\mathcal {C}}$
. By the pushout property, there are algebra homomorphisms
$A:=A_{\mathcal {C}}$
. By the pushout property, there are algebra homomorphisms 
 $$ \begin{align*} f:\mathrm{End}_{\mathcal{C}}(1) &\simeq e_1 A e_1 \to B\\ g:\mathrm{End}_{\mathcal{C}}(2) &\simeq e_2 A e_2 \to B, \end{align*} $$
$$ \begin{align*} f:\mathrm{End}_{\mathcal{C}}(1) &\simeq e_1 A e_1 \to B\\ g:\mathrm{End}_{\mathcal{C}}(2) &\simeq e_2 A e_2 \to B, \end{align*} $$
and bimodule morphisms 
 $ e_1A e_2 \simeq \mathcal {C}(2, 1) \to B, e_1 a e_2 \mapsto e_1 a e_{21}$
 and
$ e_1A e_2 \simeq \mathcal {C}(2, 1) \to B, e_1 a e_2 \mapsto e_1 a e_{21}$
 and 
 $e_2A e_1 \simeq \mathcal {C}(1, 2) \to B, e_2 a e_1 \mapsto e_{12} a e_1$
 such that
$e_2A e_1 \simeq \mathcal {C}(1, 2) \to B, e_2 a e_1 \mapsto e_{12} a e_1$
 such that 

commutes. The algebra homomorphism 
 $k \to B$
 is then uniquely determined.
$k \to B$
 is then uniquely determined.
 We have injective algebra morphisms 
 $ \mathrm {End}_{\mathcal {C}}(1) \simeq e_1 A e_1 \to A^f, a \mapsto a$
,
$ \mathrm {End}_{\mathcal {C}}(1) \simeq e_1 A e_1 \to A^f, a \mapsto a$
, 
 $\mathrm {End}_{\mathcal {C}}(2) \simeq e_2 A e_2 \to A^f, a \mapsto e_{12} a e_{21}$
. Similarly, we have injective morphisms of bimodules
$\mathrm {End}_{\mathcal {C}}(2) \simeq e_2 A e_2 \to A^f, a \mapsto e_{12} a e_{21}$
. Similarly, we have injective morphisms of bimodules 
 $\mathcal {C}(2,1) \simeq e_1 A e_2 \to A^f, a \mapsto a e_{21} $
 and
$\mathcal {C}(2,1) \simeq e_1 A e_2 \to A^f, a \mapsto a e_{21} $
 and 
 $\mathcal {C}(1,2) \simeq e_2 A e_1 \to A^f, a \mapsto e_{12} a$
 compatible with the composition of morphisms. Hence, we obtain a unique injective algebra homomorphism
$\mathcal {C}(1,2) \simeq e_2 A e_1 \to A^f, a \mapsto e_{12} a$
 compatible with the composition of morphisms. Hence, we obtain a unique injective algebra homomorphism 
 $B \to A^f$
. As the image of the above maps generates
$B \to A^f$
. As the image of the above maps generates 
 $A^f$
, this morphism is also surjective, and hence,
$A^f$
, this morphism is also surjective, and hence, 
 $B=A_{\mathcal {C}^f} \simeq A^f$
.
$B=A_{\mathcal {C}^f} \simeq A^f$
.
3.2 Trace maps
 Acccording to Van den Bergh [Reference Van den Bergh30], we consider the following situation: an R-algebra A and an idempotent e in R such that 
 $ReR=R$
. One writes
$ReR=R$
. One writes 
 $1= \sum _i p_i e q_i$
 with
$1= \sum _i p_i e q_i$
 with 
 $p_i, q_i\in R$
 and defines a trace map
$p_i, q_i\in R$
 and defines a trace map 
 $$\begin{align*}\mathrm{Tr}:A\rightarrow eAe~;~a\mapsto\sum_ieq_iap_ie.\end{align*}$$
$$\begin{align*}\mathrm{Tr}:A\rightarrow eAe~;~a\mapsto\sum_ieq_iap_ie.\end{align*}$$
We recall a series of standard results, for which we provide full proofs for the sake of completeness; the main point is to be able to describe the trace map on 
 $\Omega _RA$
 and
$\Omega _RA$
 and 
 $\mathrm {DR}_RA$
.
$\mathrm {DR}_RA$
.
Lemma 3.4. The trace map 
 $\mathrm {Tr}$
 descends to an isomorphism
$\mathrm {Tr}$
 descends to an isomorphism 
 $A/[A,A]\to eAe/ [eAe,eAe]$
 that does not depend on the choice of decomposition
$A/[A,A]\to eAe/ [eAe,eAe]$
 that does not depend on the choice of decomposition 
 $1= \sum _i p_i e q_i$
.
$1= \sum _i p_i e q_i$
.
Proof. First of all, the trace map 
 $\mathrm {Tr}$
 sends commutators to commutators. Indeed,
$\mathrm {Tr}$
 sends commutators to commutators. Indeed, 
 $$ \begin{align*} \mathrm{Tr}(ab-ba) & = \sum_{i}(eq_iabp_ie-eq_ibap_ie) \\ & = \sum_{i,j}eq_iap_jeq_jbp_ie-eq_ibp_jeq_jap_ie \\ & = \sum_{i,j}eq_iap_jeq_jbp_ie-eq_jbp_ieq_iap_je\in[eAe,eAe]. \end{align*} $$
$$ \begin{align*} \mathrm{Tr}(ab-ba) & = \sum_{i}(eq_iabp_ie-eq_ibap_ie) \\ & = \sum_{i,j}eq_iap_jeq_jbp_ie-eq_ibp_jeq_jap_ie \\ & = \sum_{i,j}eq_iap_jeq_jbp_ie-eq_jbp_ieq_iap_je\in[eAe,eAe]. \end{align*} $$
Then, one can check that it is a k-linear inverse modulo commutator, to the algebra morphism 
 $eAe\to A$
. Indeed, on the one hand,
$eAe\to A$
. Indeed, on the one hand, 
 $a=\sum _ip_ieq_i a=\mathrm {Tr}(a)~\mathrm {mod}~[A,A]$
, and on the other hand,
$a=\sum _ip_ieq_i a=\mathrm {Tr}(a)~\mathrm {mod}~[A,A]$
, and on the other hand, 
 $eae=\sum _iep_ieq_i eae=\mathrm {Tr}(eae)~\mathrm {mod}~[eAe,eAe]$
. Since the morphism
$eae=\sum _iep_ieq_i eae=\mathrm {Tr}(eae)~\mathrm {mod}~[eAe,eAe]$
. Since the morphism 
 $eAe\to A$
 does not depend on the decomposition of
$eAe\to A$
 does not depend on the decomposition of 
 $1$
, its inverse (modulo commutator) does not either.
$1$
, its inverse (modulo commutator) does not either.
Lemma 3.5. For any two A-bimodules M and N, the canonical morphism 
 $Me \otimes _{eRe} eN \to M \otimes _R N$
 of A-bimodules is inversible with the inverse given by
$Me \otimes _{eRe} eN \to M \otimes _R N$
 of A-bimodules is inversible with the inverse given by 
 $$\begin{align*}\Psi_{M,N}:M \otimes_R N \to Me \otimes_{eRe} eN~;~m \otimes n \mapsto \sum_i mp_i e \otimes eq_i n. \end{align*}$$
$$\begin{align*}\Psi_{M,N}:M \otimes_R N \to Me \otimes_{eRe} eN~;~m \otimes n \mapsto \sum_i mp_i e \otimes eq_i n. \end{align*}$$
Proof. Let us check that it is well-defined. Consider 
 $r\in R$
 and write
$r\in R$
 and write 
 $r= \sum _j h_j e l_j$
 for some
$r= \sum _j h_j e l_j$
 for some 
 $h_j, l_j \in R$
. Then
$h_j, l_j \in R$
. Then 
 $$ \begin{align*} \Psi_{M,N} (mr \otimes n ) & = \sum_imrp_i e \otimes eq_i n = \sum_{i,j} m h_j e l_j p_i e \otimes eq_i n\\ &= \sum_{i,j} m h_je \otimes e l_j p_i eq_i n = \sum_{j} m h_je \otimes e l_j n\\ &= \sum_{i,j} m p_i e q_i h_je \otimes e l_j n = \sum_{i,j} m p_i e \otimes e q_i h_je l_j n \\ &=\sum_i m p_i e \otimes e q_i r n = \Psi_{M,N}( m \otimes r n ). \end{align*} $$
$$ \begin{align*} \Psi_{M,N} (mr \otimes n ) & = \sum_imrp_i e \otimes eq_i n = \sum_{i,j} m h_j e l_j p_i e \otimes eq_i n\\ &= \sum_{i,j} m h_je \otimes e l_j p_i eq_i n = \sum_{j} m h_je \otimes e l_j n\\ &= \sum_{i,j} m p_i e q_i h_je \otimes e l_j n = \sum_{i,j} m p_i e \otimes e q_i h_je l_j n \\ &=\sum_i m p_i e \otimes e q_i r n = \Psi_{M,N}( m \otimes r n ). \end{align*} $$
We finally observe that 
 $\Psi _{M,N}$
 is an inverse to the canonical morphism
$\Psi _{M,N}$
 is an inverse to the canonical morphism 
 $Me \otimes _{eRe} eN \to M \otimes _R N$
. Indeed, in
$Me \otimes _{eRe} eN \to M \otimes _R N$
. Indeed, in 
 $M \otimes _R N$
,
$M \otimes _R N$
, 
 $\sum _i mp_i e \otimes eq_i n=\sum _i m\otimes p_i e q_i n=m\otimes n$
, and in
$\sum _i mp_i e \otimes eq_i n=\sum _i m\otimes p_i e q_i n=m\otimes n$
, and in 
 $Me \otimes _{eRe} eN$
,
$Me \otimes _{eRe} eN$
, 
 $\sum _i mep_i e \otimes eq_i en=\sum _i me\otimes p_i e q_i e n=me\otimes en$
.
$\sum _i mep_i e \otimes eq_i en=\sum _i me\otimes p_i e q_i e n=me\otimes en$
.
 As a matter of notation, we introduce 
 $\Psi _M:=\Psi _{M,M}$
.
$\Psi _M:=\Psi _{M,M}$
.
Lemma 3.6. The isomorphism 
 $\Psi _{\Omega _{A/ R}}$
 induces an isomorphism
$\Psi _{\Omega _{A/ R}}$
 induces an isomorphism 
 $e(\Omega _RA)e \simeq \Omega _{eRe}(eAe)$
, through which the trace map of
$e(\Omega _RA)e \simeq \Omega _{eRe}(eAe)$
, through which the trace map of 
 $\Omega _RA$
 reads as follows:
$\Omega _RA$
 reads as follows: 
 $$ \begin{align*} \mathrm{Tr}: \Omega_RA& \rightarrow e(\Omega_RA)e \simeq \Omega_{eRe}(eAe) \\ a_0da_1\dots da_m&\longmapsto \sum_{i_0,\dots,i_m}eq_{i_0}a_0p_{i_1}ed(eq_{i_1}a_1p_{i_2}e)\dots d(eq_{i_m}a_mp_{i_0}e). \end{align*} $$
$$ \begin{align*} \mathrm{Tr}: \Omega_RA& \rightarrow e(\Omega_RA)e \simeq \Omega_{eRe}(eAe) \\ a_0da_1\dots da_m&\longmapsto \sum_{i_0,\dots,i_m}eq_{i_0}a_0p_{i_1}ed(eq_{i_1}a_1p_{i_2}e)\dots d(eq_{i_m}a_mp_{i_0}e). \end{align*} $$
Moreover, it induces a k-linear isomorphism
 $$\begin{align*}\mathrm{Tr}: \mathrm{DR}_R ( A ) \to \mathrm{DR}_{eRe}( eAe ) \end{align*}$$
$$\begin{align*}\mathrm{Tr}: \mathrm{DR}_R ( A ) \to \mathrm{DR}_{eRe}( eAe ) \end{align*}$$
that does not depend on the decomposition 
 $1=\sum _i p_ieq_i$
.
$1=\sum _i p_ieq_i$
.
Proof. Thanks to the previous lemma, the isomorphism 
 $\Psi _{\Omega _{A/ R}}$
 induces an isomorphism of tensor algebras
$\Psi _{\Omega _{A/ R}}$
 induces an isomorphism of tensor algebras 
 $e( T_{A} \Omega _{A/R} )e\simeq T_{eAe} ( e\Omega _{A/ R} e) $
. Using
$e( T_{A} \Omega _{A/R} )e\simeq T_{eAe} ( e\Omega _{A/ R} e) $
. Using 
 $\Psi _A$
, we also have
$\Psi _A$
, we also have 
 $$ \begin{align*} \Omega_{eAe/eRe}&=\ker(eAe\otimes_{eRe}eAe\rightarrow eAe)\\ &\simeq\ker(eA\otimes_{R}Ae\rightarrow eAe)\\ &=e\ker(A\otimes_{R}A\rightarrow A)e\\ &=e\Omega_{A/R}e. \end{align*} $$
$$ \begin{align*} \Omega_{eAe/eRe}&=\ker(eAe\otimes_{eRe}eAe\rightarrow eAe)\\ &\simeq\ker(eA\otimes_{R}Ae\rightarrow eAe)\\ &=e\ker(A\otimes_{R}A\rightarrow A)e\\ &=e\Omega_{A/R}e. \end{align*} $$
Combining these, we get
 $$\begin{align*}e (\Omega_RA) e := e( T_{A} \Omega_{A/R} )e\simeq T_{eAe} ( e\Omega_{A/ R} e)\simeq T_{eAe} \Omega_{eAe/ eRe} = :\Omega_{eRe}(eAe). \end{align*}$$
$$\begin{align*}e (\Omega_RA) e := e( T_{A} \Omega_{A/R} )e\simeq T_{eAe} ( e\Omega_{A/ R} e)\simeq T_{eAe} \Omega_{eAe/ eRe} = :\Omega_{eRe}(eAe). \end{align*}$$
Through this identification, an element 
 $edae=ea\otimes e-e\otimes ae\in e\Omega _{A/R}e$
 becomes, in
$edae=ea\otimes e-e\otimes ae\in e\Omega _{A/R}e$
 becomes, in 
 $\Omega _{eAe/eRe}$
,
$\Omega _{eAe/eRe}$
, 
 $$\begin{align*}\sum_ieap_ie\otimes eq_ie-ep_ie\otimes eq_iae=eae\otimes e-e\otimes eae=:d(eae)\in \Omega_{eAe/eRe}. \end{align*}$$
$$\begin{align*}\sum_ieap_ie\otimes eq_ie-ep_ie\otimes eq_iae=eae\otimes e-e\otimes eae=:d(eae)\in \Omega_{eAe/eRe}. \end{align*}$$
Thus, the trace map reads
 $$ \begin{align*} \Omega_RA\ni a_0da_1\dots da_m&\mapsto\sum_{i_0}eq_{i_0}a_0da_1\dots da_mp_{i_0}e\in e(\Omega_RA)e\\ &\mapsto\sum_{i_0,i_1,\dots,i_m}eq_{i_0}a_0p_{i_1}ed(eq_{i_1}a_1p_{i_2}e)\dots d(eq_{i_m}a_mp_{i_0}e)\in \Omega_{eRe}(eAe). \end{align*} $$
$$ \begin{align*} \Omega_RA\ni a_0da_1\dots da_m&\mapsto\sum_{i_0}eq_{i_0}a_0da_1\dots da_mp_{i_0}e\in e(\Omega_RA)e\\ &\mapsto\sum_{i_0,i_1,\dots,i_m}eq_{i_0}a_0p_{i_1}ed(eq_{i_1}a_1p_{i_2}e)\dots d(eq_{i_m}a_mp_{i_0}e)\in \Omega_{eRe}(eAe). \end{align*} $$
The last part of the claim follows from lemma 3.4.
3.3 Functoriality
 We now apply the constructions from the previous section 3.2 to the idempotent 
 $\epsilon =1-e_2$
 of
$\epsilon =1-e_2$
 of 
 ${R^+}$
 (see definition 3.1), where
${R^+}$
 (see definition 3.1), where 
 $1=\epsilon \epsilon \epsilon +e_{21}\epsilon e_{12}$
. Precomposing with the algebra morphism
$1=\epsilon \epsilon \epsilon +e_{21}\epsilon e_{12}$
. Precomposing with the algebra morphism 
 $A\to {A^+}$
, we get maps
$A\to {A^+}$
, we get maps 
 $\Omega _RA\to \Omega _{R^f}A^f$
 and
$\Omega _RA\to \Omega _{R^f}A^f$
 and 
 $ \mathrm {DR}_R(A) \to \mathrm {DR}_{R^f}A^f$
 that we denote by
$ \mathrm {DR}_R(A) \to \mathrm {DR}_{R^f}A^f$
 that we denote by 
 $(-)^f$
. Since
$(-)^f$
. Since 
 $\epsilon e_{12}=e_{12}$
 and
$\epsilon e_{12}=e_{12}$
 and 
 $e_{21}\epsilon =e_{21}$
, we have
$e_{21}\epsilon =e_{21}$
, we have 
 $\mathrm {Tr}(a)= \epsilon a \epsilon + e_{12} a e_{21}$
 for all
$\mathrm {Tr}(a)= \epsilon a \epsilon + e_{12} a e_{21}$
 for all 
 $a\in {A^+}$
. Actually, the trace map in this situation also has a simpler expression on forms.
$a\in {A^+}$
. Actually, the trace map in this situation also has a simpler expression on forms.
Lemma 3.7. On 
 $\Omega _{{A^+}/{R^+}}$
, we have
$\Omega _{{A^+}/{R^+}}$
, we have 
 $$\begin{align*}\mathrm{Tr}(adb )= \epsilon a d b \epsilon + e_{12} ad b e_{21},\end{align*}$$
$$\begin{align*}\mathrm{Tr}(adb )= \epsilon a d b \epsilon + e_{12} ad b e_{21},\end{align*}$$
and dually, we have a trace map on double derivations
 $$\begin{align*}\mathrm{Tr}:D_{{R^+}}{A^+}\to D_{R^f}A^f~,~\delta\mapsto \epsilon \delta \epsilon + e_{12} \delta e_{21}.\end{align*}$$
$$\begin{align*}\mathrm{Tr}:D_{{R^+}}{A^+}\to D_{R^f}A^f~,~\delta\mapsto \epsilon \delta \epsilon + e_{12} \delta e_{21}.\end{align*}$$
More generally, if 
 $\omega \in \Omega _{{R^+}}{A^+}$
, we have
$\omega \in \Omega _{{R^+}}{A^+}$
, we have 
 $\mathrm {Tr}(\omega )=\epsilon \omega \epsilon + e_{12} \omega e_{21}$
.
$\mathrm {Tr}(\omega )=\epsilon \omega \epsilon + e_{12} \omega e_{21}$
.
Proof. Thanks to lemma 3.6, we have on 
 $1$
-forms
$1$
-forms 
 $$ \begin{align*} \mathrm{Tr}(adb )&= \epsilon a \epsilon d (\epsilon b \epsilon)+e_{12} a \epsilon d(\epsilon b e_{21}) + e_{12} a e_{21} d (e_{12} b e_{21})+ \epsilon a e_{21}d ( e_{12} b \epsilon) \\ &= \epsilon a \epsilon d b \epsilon+e_{12} a \epsilon d b e_{21}+ e_{12} a e_{2} d b e_{21}+ \epsilon a e_{2}d b \epsilon. \end{align*} $$
$$ \begin{align*} \mathrm{Tr}(adb )&= \epsilon a \epsilon d (\epsilon b \epsilon)+e_{12} a \epsilon d(\epsilon b e_{21}) + e_{12} a e_{21} d (e_{12} b e_{21})+ \epsilon a e_{21}d ( e_{12} b \epsilon) \\ &= \epsilon a \epsilon d b \epsilon+e_{12} a \epsilon d b e_{21}+ e_{12} a e_{2} d b e_{21}+ \epsilon a e_{2}d b \epsilon. \end{align*} $$
If 
 $a\in Ae_2$
 and
$a\in Ae_2$
 and 
 $b\in e_2A$
, as
$b\in e_2A$
, as 
 $\epsilon e_2=e_2\epsilon =0$
, we get
$\epsilon e_2=e_2\epsilon =0$
, we get 
 $$\begin{align*}\mathrm{Tr}(adb )= e_{12} ad b e_{21}+ \epsilon a d b \epsilon.\end{align*}$$
$$\begin{align*}\mathrm{Tr}(adb )= e_{12} ad b e_{21}+ \epsilon a d b \epsilon.\end{align*}$$
If 
 $a\in Ae_i$
 and
$a\in Ae_i$
 and 
 $b\in e_iA$
 for some
$b\in e_iA$
 for some 
 $i\neq 2$
, as
$i\neq 2$
, as 
 $\epsilon e_i=e_i\epsilon =e_i$
, we again have
$\epsilon e_i=e_i\epsilon =e_i$
, we again have 
 $$\begin{align*}\mathrm{Tr}(adb )= \epsilon a d b \epsilon + e_{12} ad b e_{21}.\end{align*}$$
$$\begin{align*}\mathrm{Tr}(adb )= \epsilon a d b \epsilon + e_{12} ad b e_{21}.\end{align*}$$
It generalizes to all forms.
 We go back to the context of a dg-category 
 $\mathcal {C}$
 with a finite set of objects I and set
$\mathcal {C}$
 with a finite set of objects I and set 
 $A:=A_{\mathcal {C}}$
. We define idempotents
$A:=A_{\mathcal {C}}$
. We define idempotents 
 $e_i=\mathrm {id_i}$
 and set
$e_i=\mathrm {id_i}$
 and set 
 $R=\oplus _{i\in I}ke_i$
, a subalgebra of A. Recall that
$R=\oplus _{i\in I}ke_i$
, a subalgebra of A. Recall that 
 $R^f\simeq \oplus _{i\neq 2}ke_i$
 and consider the k-linear map
$R^f\simeq \oplus _{i\neq 2}ke_i$
 and consider the k-linear map 
 $C_{*}(\mathcal {C})\to \Omega ^*_R A$
 given by
$C_{*}(\mathcal {C})\to \Omega ^*_R A$
 given by 
 $$\begin{align*}a_0\otimes a_1\otimes\dots\otimes a_m\mapsto a_0da_1\dots da_m. \end{align*}$$
$$\begin{align*}a_0\otimes a_1\otimes\dots\otimes a_m\mapsto a_0da_1\dots da_m. \end{align*}$$
Since there is a functor 
 $\mathcal {C}\to \mathcal {C}^f$
, we have a natural map
$\mathcal {C}\to \mathcal {C}^f$
, we have a natural map 
 $\nu :C_{*}(\mathcal {C})\to C_{*}(\mathcal {C}^f)$
.
$\nu :C_{*}(\mathcal {C})\to C_{*}(\mathcal {C}^f)$
.
Lemma 3.8. The following diagram commutes:

Proof. Thanks to lemma 3.6, the map 
 $ \Omega _R^*(A) \to \Omega _{R^f}^*(A^f)$
 is given by
$ \Omega _R^*(A) \to \Omega _{R^f}^*(A^f)$
 is given by 
 $$\begin{align*}(a_0d a_1\cdots a_m)^f=\sum_{i_0,\dots,i_m}q_{i_0}a_0p_{i_1}d(q_{i_1}a_1p_{i_2})\dots d(q_{i_m}a_mp_{i_0}). \end{align*}$$
$$\begin{align*}(a_0d a_1\cdots a_m)^f=\sum_{i_0,\dots,i_m}q_{i_0}a_0p_{i_1}d(q_{i_1}a_1p_{i_2})\dots d(q_{i_m}a_mp_{i_0}). \end{align*}$$
Since 
 $p_{i_j}\epsilon =p_{i_j}$
 and
$p_{i_j}\epsilon =p_{i_j}$
 and 
 $\epsilon q_{i_j}=q_{i_j}$
 in our situation, that is either
$\epsilon q_{i_j}=q_{i_j}$
 in our situation, that is either 
 $p_{i_j}=\epsilon =q_{i_j}$
 or
$p_{i_j}=\epsilon =q_{i_j}$
 or 
 $p_{i_j}=e_{21},q_{i_j}=e_{12}$
. Now, if
$p_{i_j}=e_{21},q_{i_j}=e_{12}$
. Now, if 
 $a_0\otimes \cdots a_m$
 belongs to the Hochschild complex of
$a_0\otimes \cdots a_m$
 belongs to the Hochschild complex of 
 $\mathcal {C}$
, then these elements are completely determined by the
$\mathcal {C}$
, then these elements are completely determined by the 
 $a_j$
’s. Indeed, if
$a_j$
’s. Indeed, if 
 $a_j\in \mathcal {C}(x_{j+1},x_j)$
, then
$a_j\in \mathcal {C}(x_{j+1},x_j)$
, then 
 $q_{i_j}=\epsilon $
 whenever
$q_{i_j}=\epsilon $
 whenever 
 $x_j\neq 2$
 and
$x_j\neq 2$
 and 
 $p_{i_{j+1}}=\epsilon $
 whenever
$p_{i_{j+1}}=\epsilon $
 whenever 
 $x_{j+1}\neq 2$
.
$x_{j+1}\neq 2$
.
 From the proof of proposition 3.3, we have that 
 $\mathcal {C}(x,y)\to A^f$
 is given by
$\mathcal {C}(x,y)\to A^f$
 is given by 
 $a\mapsto q a p$
, with
$a\mapsto q a p$
, with 
- 
•  $q=\epsilon $
 if $q=\epsilon $
 if $y\neq 2$
, and $y\neq 2$
, and $e_{12}$
 otherwise. $e_{12}$
 otherwise.
- 
•  $p=\epsilon $
 if $p=\epsilon $
 if $x\neq 2$
, and $x\neq 2$
, and $e_{21}$
 otherwise. $e_{21}$
 otherwise.
Hence, the composed map 
 $ C_{*}(\mathcal {C})\to C_{*}(\mathcal {C}^f)\to \Omega _{R^f}^*(A^f)$
 is given by
$ C_{*}(\mathcal {C})\to C_{*}(\mathcal {C}^f)\to \Omega _{R^f}^*(A^f)$
 is given by 
 $$\begin{align*}a_0 \otimes \cdots \otimes a_m \mapsto q_{i_0}a_0p_{i_1} \otimes q_{i_1} a_2 p_{i_2} \otimes \cdots \otimes q_{i_m} a_m p_{i_0}, \end{align*}$$
$$\begin{align*}a_0 \otimes \cdots \otimes a_m \mapsto q_{i_0}a_0p_{i_1} \otimes q_{i_1} a_2 p_{i_2} \otimes \cdots \otimes q_{i_m} a_m p_{i_0}, \end{align*}$$
with the same 
 $p_{i_j}$
’s and
$p_{i_j}$
’s and 
 $q_{i_j}$
’s as above, proving the commutativity.
$q_{i_j}$
’s as above, proving the commutativity.
Lemma 3.9. Let 
 $\omega \in \Omega ^2_R(A)$
. Then
$\omega \in \Omega ^2_R(A)$
. Then 
 $\omega $
 induces a map
$\omega $
 induces a map 
 $\iota (\omega ): D_{A/R}\to \Omega _{A/R}$
. Under the fusion process, the following diagram commutes:
$\iota (\omega ): D_{A/R}\to \Omega _{A/R}$
. Under the fusion process, the following diagram commutes: 

Proof. The commutativity of the left-hand side square follows immediately from definitions, and the commutativity of the right-hand side square means that
 $$\begin{align*}\iota_{\mathrm{Tr}(\delta)} (\mathrm{Tr}(\omega) ) = \mathrm{Tr} (\iota_{\delta} (\omega) ) \end{align*}$$
$$\begin{align*}\iota_{\mathrm{Tr}(\delta)} (\mathrm{Tr}(\omega) ) = \mathrm{Tr} (\iota_{\delta} (\omega) ) \end{align*}$$
for all 
 $\omega \in \Omega ^2_{{R^+}}({A^+})$
 and
$\omega \in \Omega ^2_{{R^+}}({A^+})$
 and 
 $\delta \in D_{{A^+}/{R^+}}$
. We prove this now. Recall that the bimodule structure on
$\delta \in D_{{A^+}/{R^+}}$
. We prove this now. Recall that the bimodule structure on 
 $D_{A/R}$
 is induced by the inner one on
$D_{A/R}$
 is induced by the inner one on 
 $A\otimes _RA$
. We know from the proof of [Reference Crawley-Boevey, Etingof and Ginzburg9, Lemma 2.8.6] that
$A\otimes _RA$
. We know from the proof of [Reference Crawley-Boevey, Etingof and Ginzburg9, Lemma 2.8.6] that 
 $\iota _{a\delta b}=a\iota _{\delta } b$
. Thanks to lemma 3.7, we thus have
$\iota _{a\delta b}=a\iota _{\delta } b$
. Thanks to lemma 3.7, we thus have 
 $$ \begin{align*} \iota_{\mathrm{Tr}(\delta)} (\mathrm{Tr}(\omega) )&=\iota_{\epsilon\delta\epsilon+e_{12}\delta e_{21}} (\mathrm{Tr}(\omega) )\\ &=\epsilon\iota_{\delta} (\mathrm{Tr}(\omega) )\epsilon+e_{12}\iota_{\delta } (\mathrm{Tr}(\omega) )e_{21}\\ &=\epsilon\iota_{\delta} (\epsilon\omega\epsilon+e_{12}\omega e_{21})\epsilon+e_{12}\iota_{\delta } (\epsilon\omega\epsilon+e_{12}\omega e_{21} )e_{21}\\ &=\epsilon\iota_{\delta} (\omega)\epsilon+e_{12}\iota_{\delta}(\omega) e_{21}\\ &=\mathrm{Tr} (\iota_{\delta} (\omega) ), \end{align*} $$
$$ \begin{align*} \iota_{\mathrm{Tr}(\delta)} (\mathrm{Tr}(\omega) )&=\iota_{\epsilon\delta\epsilon+e_{12}\delta e_{21}} (\mathrm{Tr}(\omega) )\\ &=\epsilon\iota_{\delta} (\mathrm{Tr}(\omega) )\epsilon+e_{12}\iota_{\delta } (\mathrm{Tr}(\omega) )e_{21}\\ &=\epsilon\iota_{\delta} (\epsilon\omega\epsilon+e_{12}\omega e_{21})\epsilon+e_{12}\iota_{\delta } (\epsilon\omega\epsilon+e_{12}\omega e_{21} )e_{21}\\ &=\epsilon\iota_{\delta} (\omega)\epsilon+e_{12}\iota_{\delta}(\omega) e_{21}\\ &=\mathrm{Tr} (\iota_{\delta} (\omega) ), \end{align*} $$
as wished.
3.4 Fusion and 
 $1$
-smoothness
$1$
-smoothness
We start with the following notion simply called ‘smoothness’ in [Reference Crawley-Boevey, Etingof and Ginzburg9] or [Reference Van den Bergh30].
Definition 3.10. We call an R-algebra A  
 $1$
-smooth if it is finitely generated over R and formally smooth in the sense of [Reference Ginzburg13, §19], meaning that
$1$
-smooth if it is finitely generated over R and formally smooth in the sense of [Reference Ginzburg13, §19], meaning that 
 $\Omega _{A/R}$
 is a projective A-bimodule.
$\Omega _{A/R}$
 is a projective A-bimodule.
 It implies that A has a projective dimension at most 1 and that we may (and will) use short resolutions. Note that it implies smoothness of associated representation schemes, but we call it 
 $1$
-smooth in order to emphasize that it is way more demanding than the notion of (homological) smoothness we use in previous works [Reference Bozec, Calaque and Scherotzke3, Reference Bozec, Calaque and Scherotzke4] for dg-categories (see also section 4.1), following, for example, [Reference Keller18].
$1$
-smooth in order to emphasize that it is way more demanding than the notion of (homological) smoothness we use in previous works [Reference Bozec, Calaque and Scherotzke3, Reference Bozec, Calaque and Scherotzke4] for dg-categories (see also section 4.1), following, for example, [Reference Keller18].
 In the sequel, assume that 
 $A=A_{\mathcal {C}}$
, where
$A=A_{\mathcal {C}}$
, where 
 $\mathcal {C}$
 has a finite number of objects, and
$\mathcal {C}$
 has a finite number of objects, and 
 $R=\oplus _{e\in Ob(\mathcal {C})}ke$
.
$R=\oplus _{e\in Ob(\mathcal {C})}ke$
.
Proposition 3.11. If A is 
 $1$
-smooth over R, then so is
$1$
-smooth over R, then so is 
 $A^f$
 over
$A^f$
 over 
 $R^f$
.
$R^f$
.
Proof. Recall that 
 ${A^+}=A \otimes _R {R^+}$
. By definition,
${A^+}=A \otimes _R {R^+}$
. By definition, 
 $\Omega _{{A^+}/{R^+}} $
 is the kernel of the multiplication map
$\Omega _{{A^+}/{R^+}} $
 is the kernel of the multiplication map 
 $m^+:{A^+} \otimes _{{R^+}} {A^+} \rightarrow {A^+} $
 which can be identified with
$m^+:{A^+} \otimes _{{R^+}} {A^+} \rightarrow {A^+} $
 which can be identified with 

Since R-modules are 
 $Ob(\mathcal {C})\times Ob(\mathcal {C})$
-graded k-vector space,
$Ob(\mathcal {C})\times Ob(\mathcal {C})$
-graded k-vector space, 
 $R^+$
 is flat over R and
$R^+$
 is flat over R and 
 $$\begin{align*}\Omega_{{A^+}/{R^+}}\simeq (R^+)^e\otimes_{R^e} \Omega_{A/R} \simeq (R^+)^e\otimes_{R^e}A^e\otimes_{A^e} \Omega_{A/R} \simeq (A^+)^e\otimes_{A^e} \Omega_{A/R}. \end{align*}$$
$$\begin{align*}\Omega_{{A^+}/{R^+}}\simeq (R^+)^e\otimes_{R^e} \Omega_{A/R} \simeq (R^+)^e\otimes_{R^e}A^e\otimes_{A^e} \Omega_{A/R} \simeq (A^+)^e\otimes_{A^e} \Omega_{A/R}. \end{align*}$$
Since 
 $\Omega _{A/R}$
 is a projective A-bimodule,
$\Omega _{A/R}$
 is a projective A-bimodule, 
 $\Omega _{{A^+}/{R^+}} $
 is a projective
$\Omega _{{A^+}/{R^+}} $
 is a projective 
 ${A^+}$
-bimodule.
${A^+}$
-bimodule.
 Then, we know that 
 $\Omega _{A^f/R^f}= e \Omega _{{A^+}/{R^+} }e$
 from lemma 3.6. Since
$\Omega _{A^f/R^f}= e \Omega _{{A^+}/{R^+} }e$
 from lemma 3.6. Since 
 $ \Omega _{{A^+}/{R^+} } $
 is a projective
$ \Omega _{{A^+}/{R^+} } $
 is a projective 
 ${A^+} $
-bimodule, there exists
${A^+} $
-bimodule, there exists 
 $r\in \mathbb N$
 such that
$r\in \mathbb N$
 such that 
 $\Omega _{A^f/R^f}$
 is a direct summand of
$\Omega _{A^f/R^f}$
 is a direct summand of 
 $e( {A^+} \otimes _{R^+} {A^+})^re=(e {A^+} \otimes _{R^+} {A^+}e)^r\simeq (A^f\otimes _{R^f} A^f)^r$
 by lemma 3.5. Hence,
$e( {A^+} \otimes _{R^+} {A^+})^re=(e {A^+} \otimes _{R^+} {A^+}e)^r\simeq (A^f\otimes _{R^f} A^f)^r$
 by lemma 3.5. Hence, 
 $\Omega _{A^f/R^f}$
 is a projective
$\Omega _{A^f/R^f}$
 is a projective 
 $A^f$
-bimodule.
$A^f$
-bimodule.
4 Calabi–Yau versus bisymplectic structures
 In this section, we recall the notion of Calabi–Yau structures for dg-categories as in [Reference Brav and Dyckerhoff5, Reference Toën25] and bisymplectic structures on algebras as in [Reference Crawley-Boevey, Etingof and Ginzburg9]. We then introduce the fusion process for bisymplectic structures in analogy with the fusion for double Poisson structures from [Reference Van den Bergh30]. We show that a relative Calabi–Yau structure on 
 $\coprod _{c\in \mathrm {Ob}(\mathcal {C})}k[x_c] \to \mathcal {C}$
,
$\coprod _{c\in \mathrm {Ob}(\mathcal {C})}k[x_c] \to \mathcal {C}$
, 
 $\mathcal {C}$
 a k-linear category, gives rise to a bisymplectic one on the path algebra
$\mathcal {C}$
 a k-linear category, gives rise to a bisymplectic one on the path algebra 
 $A_{\mathcal {C}}$
 associated to
$A_{\mathcal {C}}$
 associated to 
 $\mathcal {C}$
. Finally, we prove that the composition with the ‘additive pair-of-pants’ Calabi–Yau cospan induces fusion for the corresponding bisymplectic structures on
$\mathcal {C}$
. Finally, we prove that the composition with the ‘additive pair-of-pants’ Calabi–Yau cospan induces fusion for the corresponding bisymplectic structures on 
 $A_{\mathcal {C}}$
.
$A_{\mathcal {C}}$
.
4.1 Calabi–Yau structures, absolute and relative
 Our notation follows [Reference Bozec, Calaque and Scherotzke3, Reference Bozec, Calaque and Scherotzke4]. A dg-category 
 $\mathcal {A}$
 is called (homologically) smooth if
$\mathcal {A}$
 is called (homologically) smooth if 
 $\mathcal {A}$
 is a perfect
$\mathcal {A}$
 is a perfect 
 $\mathcal {A}^e$
-module. In this case, we have the following equivalence:
$\mathcal {A}^e$
-module. In this case, we have the following equivalence: 

where 
 $\mathcal {A}^{\vee }$
 is the dualizing bimodule.
$\mathcal {A}^{\vee }$
 is the dualizing bimodule.
Definition 4.1. Let 
 $\mathcal {A}$
 be a smooth dg-category. An n-Calabi–Yau structure on
$\mathcal {A}$
 be a smooth dg-category. An n-Calabi–Yau structure on 
 $\mathcal {A}$
 is a negative cyclic class
$\mathcal {A}$
 is a negative cyclic class 
 such that the underlying Hochschild class
 such that the underlying Hochschild class 
 is non-degenerate, in the sense that
 is non-degenerate, in the sense that 
 $c_0^{\flat }:\mathcal {A}^{\vee }[n]\to \mathcal {A}$
 is an equivalence.
$c_0^{\flat }:\mathcal {A}^{\vee }[n]\to \mathcal {A}$
 is an equivalence.
Relative Calabi–Yau structures on morphisms and cospans of dg-categories where introduced by Brav–Dyckerhoff [Reference Brav and Dyckerhoff5] following Toën [Reference Toën25, §5.3].
Definition 4.2. An n-Calabi–Yau structure on a cospan
 
of smooth dg-categories is a homotopy commuting diagram

whose image under 
 $(-)^{\natural }$
 is non-degenerate in the following sense:
$(-)^{\natural }$
 is non-degenerate in the following sense: 
 $c_{\mathcal {A}}^{\natural }$
 and
$c_{\mathcal {A}}^{\natural }$
 and 
 
are non-degenerate, and the homotopy commuting square

is cartesian. We say that a morphism 
 $g: \mathcal {A} \longrightarrow \mathcal {C}$
 is relative n-Calabi–Yau if the copsan
$g: \mathcal {A} \longrightarrow \mathcal {C}$
 is relative n-Calabi–Yau if the copsan 
 
is n-Calabi–Yau.
 We will also use the fact that by [Reference Brav and Dyckerhoff5, Theorem 6.2], n-Calabi–Yau cospans compose. It is immediate with the above definitions that an n-Calabi–Yau structure on 
 is the same as an
 is the same as an 
 $(n+1)$
-Calabi–Yau structure on
$(n+1)$
-Calabi–Yau structure on 
 . Finally, recall (see, for example, [Reference Bozec, Calaque and Scherotzke4, Proposition 2.3]) that a non-degenerate Hochschild class on a smooth dg-category
. Finally, recall (see, for example, [Reference Bozec, Calaque and Scherotzke4, Proposition 2.3]) that a non-degenerate Hochschild class on a smooth dg-category 
 $\mathcal {A}$
 concentrated in degree zero admits a unique cyclic lift, making
$\mathcal {A}$
 concentrated in degree zero admits a unique cyclic lift, making 
 $\mathcal {A}$
 a Calabi–Yau category.
$\mathcal {A}$
 a Calabi–Yau category.
Example 4.3.
- 
• The algebra  $k[x]$
 carries a $k[x]$
 carries a $1$
-Calabi–Yau structure. We call the Calabi–Yau structure induced by $1$
-Calabi–Yau structure. We call the Calabi–Yau structure induced by the natural Calabi–Yau structure. the natural Calabi–Yau structure.
- 
• Let  $Q=(I,E)$
 be a finite quiver, where I is the set of vertices and E the set of arrows. Denote by $Q=(I,E)$
 be a finite quiver, where I is the set of vertices and E the set of arrows. Denote by $\overline {Q}$
 the double quiver obtained by adding for every arrow $\overline {Q}$
 the double quiver obtained by adding for every arrow $a\in E$
 an arrow $a\in E$
 an arrow $a^*$
 in the opposite direction. Consider the path algebra of the double quiver $a^*$
 in the opposite direction. Consider the path algebra of the double quiver $A:=k \overline {Q}$
. There is a relative $A:=k \overline {Q}$
. There is a relative $1$
-Calabi–Yau structure on the moment map $1$
-Calabi–Yau structure on the moment map $k[x]\to kA$
, $k[x]\to kA$
, $x\mapsto \sum _{a\in E}[a,a^*]$
, which is compatible with the natural one on $x\mapsto \sum _{a\in E}[a,a^*]$
, which is compatible with the natural one on $k[x]$
; see [Reference Bozec, Calaque and Scherotzke3, 5.3.2]. $k[x]$
; see [Reference Bozec, Calaque and Scherotzke3, 5.3.2].
- 
• The algebra  $k[x^{\pm 1}]$
 carries a natural $k[x^{\pm 1}]$
 carries a natural $1$
-Calabi–Yau structure induced by $1$
-Calabi–Yau structure induced by . This has been shown in [Reference Bozec, Calaque and Scherotzke4] Section 3.1. See also section 2.4 for the cyclic lift. . This has been shown in [Reference Bozec, Calaque and Scherotzke4] Section 3.1. See also section 2.4 for the cyclic lift.
The next example of a Calabi–Yau cospan was investigated thoroughly in Section 3.3 of [Reference Bozec, Calaque and Scherotzke4] and related to the pair-of-pants.
Example 4.4 (Pair-of-pants).
The cospan
 $$ \begin{align} k[x^{\pm1}] \amalg k[y^{\pm1}] \longrightarrow k\langle x^{\pm1} ,y^{{\pm1}} \rangle\longleftarrow k[z^{\pm1}] \end{align} $$
$$ \begin{align} k[x^{\pm1}] \amalg k[y^{\pm1}] \longrightarrow k\langle x^{\pm1} ,y^{{\pm1}} \rangle\longleftarrow k[z^{\pm1}] \end{align} $$
where the rightmost map is 
 $z\mapsto xy$
, is a relative
$z\mapsto xy$
, is a relative 
 $1$
-Calabi–Yau cospan with the Calabi–Yau structures
$1$
-Calabi–Yau cospan with the Calabi–Yau structures 
 $\alpha _1(x)+\alpha _1(y)-\alpha _1(z) =b(\beta _1)\sim 0$
 and homotopy
$\alpha _1(x)+\alpha _1(y)-\alpha _1(z) =b(\beta _1)\sim 0$
 and homotopy 
 $\beta _1:=y^{-1}\otimes x^{-1}\otimes xy-y\otimes y^{-1}x^{-1}\otimes x$
.
$\beta _1:=y^{-1}\otimes x^{-1}\otimes xy-y\otimes y^{-1}x^{-1}\otimes x$
.
We prove here the additive version of the previous example which we refer to as the additive pair-of-pants, as opposed to the multiplicative pair-of-pants of the previous example.
Lemma 4.5. There exists a relative 
 $1$
-Calabi–Yau structure on
$1$
-Calabi–Yau structure on 
 $$ \begin{align} k[x]\coprod k[y] \longrightarrow k\langle x,y\rangle \longleftarrow k[z]\,, \end{align} $$
$$ \begin{align} k[x]\coprod k[y] \longrightarrow k\langle x,y\rangle \longleftarrow k[z]\,, \end{align} $$
where the rightmost map is 
 $z\mapsto x+y$
, such that the underlying absolute
$z\mapsto x+y$
, such that the underlying absolute 
 $1$
-Calabi–Yau structures on
$1$
-Calabi–Yau structures on 
 $k[x]$
,
$k[x]$
, 
 $k[y]$
 and
$k[y]$
 and 
 $k[z]$
 are the natural ones.
$k[z]$
 are the natural ones.
Proof. The algebra 
 ${\mathcal B}:=k\langle x,y \rangle $
 has a small resolution as a
${\mathcal B}:=k\langle x,y \rangle $
 has a small resolution as a 
 ${\mathcal B}$
-bimodule:
${\mathcal B}$
-bimodule: 
 $$\begin{align*}({\mathcal B}^e)^{\oplus2}[1] \oplus {\mathcal B}^e \end{align*}$$
$$\begin{align*}({\mathcal B}^e)^{\oplus2}[1] \oplus {\mathcal B}^e \end{align*}$$
with differential sending 
 $(1\otimes 1,0)$
 to
$(1\otimes 1,0)$
 to 
 $x\otimes 1-1\otimes x$
, and
$x\otimes 1-1\otimes x$
, and 
 $(0,1\otimes 1)$
 to
$(0,1\otimes 1)$
 to 
 $y\otimes 1-1\otimes y$
. Therefore,
$y\otimes 1-1\otimes y$
. Therefore, 
 $$\begin{align*}{\mathcal B}^{\vee}\simeq {\mathcal B}^e\oplus ({\mathcal B}^e)^{\oplus2}[-1] \end{align*}$$
$$\begin{align*}{\mathcal B}^{\vee}\simeq {\mathcal B}^e\oplus ({\mathcal B}^e)^{\oplus2}[-1] \end{align*}$$
with differential sending 
 $1\otimes 1$
 to
$1\otimes 1$
 to 
 $(x\otimes 1-1\otimes x,y\otimes 1-1\otimes y)$
.
$(x\otimes 1-1\otimes x,y\otimes 1-1\otimes y)$
.
 The canonical Calabi–Yau structures on 
 $\mathcal A:=k[x]$
 are given by
$\mathcal A:=k[x]$
 are given by 
 $\alpha _1(x)= 1\otimes x \in \mathrm {HH}_1(\mathcal {A})$
. Note that
$\alpha _1(x)= 1\otimes x \in \mathrm {HH}_1(\mathcal {A})$
. Note that 
 $\alpha _1$
 has a unique cyclic lift by Proposition 2.3 of [Reference Bozec, Calaque and Scherotzke4] which we denote
$\alpha _1$
 has a unique cyclic lift by Proposition 2.3 of [Reference Bozec, Calaque and Scherotzke4] which we denote 
 $\alpha $
. The following diagram induced by the natural Calabi–Yau structures on
$\alpha $
. The following diagram induced by the natural Calabi–Yau structures on 
 $\mathcal A$
 is strictly commutative:
$\mathcal A$
 is strictly commutative: 

Using the small resolution of 
 $\mathcal {A}$
, we find
$\mathcal {A}$
, we find 
 ${\mathcal A}\underset {{\mathcal A}^e}{\otimes }{\mathcal B}^e \simeq {\mathcal B}^e[1] \oplus {\mathcal B}^e$
, with differential sending
${\mathcal A}\underset {{\mathcal A}^e}{\otimes }{\mathcal B}^e \simeq {\mathcal B}^e[1] \oplus {\mathcal B}^e$
, with differential sending 
 $1\otimes 1$
 to
$1\otimes 1$
 to 
 $x \otimes 1 -1\otimes x$
. Hence, we get that the diagram is cartesian. The zero homotopy is the unique lift in cyclic homology between
$x \otimes 1 -1\otimes x$
. Hence, we get that the diagram is cartesian. The zero homotopy is the unique lift in cyclic homology between 
 $\alpha (z)$
 and
$\alpha (z)$
 and 
 $\alpha (x)+\alpha (y)$
. Therefore, the cospan (4.2) carries a relative
$\alpha (x)+\alpha (y)$
. Therefore, the cospan (4.2) carries a relative 
 $1$
-Calabi–Yau structure.
$1$
-Calabi–Yau structure.
4.2 Bisymplectic structures and fusion
 Let A be an R-algebra, where 
 $R= ke_1 \oplus \cdots \oplus ke_n$
 is based on pairwise orthogonal idempotents as usual. We define gauge elements
$R= ke_1 \oplus \cdots \oplus ke_n$
 is based on pairwise orthogonal idempotents as usual. We define gauge elements 
 $E_i=(a\mapsto ae_i\otimes e_i-e_i\otimes e_ia)\in D_{A/R}$
 and recall notions introduced in [Reference Crawley-Boevey, Etingof and Ginzburg9].
$E_i=(a\mapsto ae_i\otimes e_i-e_i\otimes e_ia)\in D_{A/R}$
 and recall notions introduced in [Reference Crawley-Boevey, Etingof and Ginzburg9].
Definition 4.6. We call 
 $\omega \in \Omega ^2_R(A)$
 a bisymplectic structure on A if
$\omega \in \Omega ^2_R(A)$
 a bisymplectic structure on A if 
- 
•  $\omega $
 is closed; that is, $\omega $
 is closed; that is, $d \omega =0 \in \mathrm {DR}_R(A)$
, $d \omega =0 \in \mathrm {DR}_R(A)$
,
- 
•  $\omega $
 is non-degenerate that is, $\omega $
 is non-degenerate that is, $\iota (\omega ): D_{A/R} \to \Omega _{A/R}, \delta \mapsto \iota _{\delta }(\omega )$
 is an isomorphism. $\iota (\omega ): D_{A/R} \to \Omega _{A/R}, \delta \mapsto \iota _{\delta }(\omega )$
 is an isomorphism.
An element 
 $\mu =(\mu _i)\in \oplus _ie_iAe_i$
 is a moment map for a bisymplectic algebra
$\mu =(\mu _i)\in \oplus _ie_iAe_i$
 is a moment map for a bisymplectic algebra 
 $(A,\omega )$
 if
$(A,\omega )$
 if 
 $$\begin{align*}d\mu_i=\iota_{E_i}(\omega)\end{align*}$$
$$\begin{align*}d\mu_i=\iota_{E_i}(\omega)\end{align*}$$
for all 
 $i\in I$
.
$i\in I$
.
 A moment map always exists; see [Reference Van den Bergh30, A.7]. Now we discuss fusion of bisymplectic structures and aim to prove [Reference Van den Bergh30, Proposition 2.6.6]. We use the notation of section 3. Recall that we have trace maps 
 $A \to A^f, a \mapsto a^f=\epsilon a \epsilon + e_{12} a e_{21}$
,
$A \to A^f, a \mapsto a^f=\epsilon a \epsilon + e_{12} a e_{21}$
, 
 $\Omega _R^* (A)\to \Omega _{R^f}^* (A^f)$
 and
$\Omega _R^* (A)\to \Omega _{R^f}^* (A^f)$
 and 
 $D_R^*(A) \to D_{R^f}^*(A^f)$
. Let A be an algebra equipped with a bisymplectic structure
$D_R^*(A) \to D_{R^f}^*(A^f)$
. Let A be an algebra equipped with a bisymplectic structure 
 $\omega $
, with moment map
$\omega $
, with moment map 
 $\mu $
. We define
$\mu $
. We define 
 $\mu _i^{f\!\!f}=\mu _i^f=\mu _i $
 for
$\mu _i^{f\!\!f}=\mu _i^f=\mu _i $
 for 
 $i\ge 3$
 and
$i\ge 3$
 and 
 $$\begin{align*}\mu_1^{f\!\!f}= \mu_1 +e_{12} \mu_2 e_{21} = \mu_1^f+ \mu_2^f.\end{align*}$$
$$\begin{align*}\mu_1^{f\!\!f}= \mu_1 +e_{12} \mu_2 e_{21} = \mu_1^f+ \mu_2^f.\end{align*}$$
Lemma 4.7. The form 
 $\omega ^f\in \Omega _{R^f}^2 (A^f)$
 is a bisymplectic structure on
$\omega ^f\in \Omega _{R^f}^2 (A^f)$
 is a bisymplectic structure on 
 $A^f$
, with moment map
$A^f$
, with moment map 
 $\mu ^{f\!\!f}$
.
$\mu ^{f\!\!f}$
.
Proof. By definition, 
 $\omega ^f \in \Omega ^2_{R^f}A^f$
 is a closed form. We need to show that
$\omega ^f \in \Omega ^2_{R^f}A^f$
 is a closed form. We need to show that 
 $\iota (\omega ^f): D_{A^f/R^f} \to \Omega _{A^f/R^f}$
 is an isomorphism. Recall from lemma 3.9 that we have the following commutative diagram:
$\iota (\omega ^f): D_{A^f/R^f} \to \Omega _{A^f/R^f}$
 is an isomorphism. Recall from lemma 3.9 that we have the following commutative diagram: 

Now, 
 $\iota ({\omega ^+})$
 is an isomorphism as it is obtained from
$\iota ({\omega ^+})$
 is an isomorphism as it is obtained from 
 $\iota (\omega )$
 by an extension of rings
$\iota (\omega )$
 by an extension of rings 
 $-\otimes _R {R^+}$
, where R is semi-simple.
$-\otimes _R {R^+}$
, where R is semi-simple.
 We observe that the map 
 $\mathrm {Tr}: \Omega _{{A^+}/{R^+}} \to \Omega _{A^f/R^f}$
 is surjective. As
$\mathrm {Tr}: \Omega _{{A^+}/{R^+}} \to \Omega _{A^f/R^f}$
 is surjective. As 
 $\iota ({\omega ^+})$
 is surjective,
$\iota ({\omega ^+})$
 is surjective, 
 $\iota (\omega ^f)$
 is also surjective by lemma 3.9. Furthermore, the kernel of
$\iota (\omega ^f)$
 is also surjective by lemma 3.9. Furthermore, the kernel of 
 $\mathrm {Tr}: \Omega _{{A^+}/{R^+}} \to \Omega _{A^f/R^f}$
 is given by
$\mathrm {Tr}: \Omega _{{A^+}/{R^+}} \to \Omega _{A^f/R^f}$
 is given by 
 $ \epsilon \Omega _{A/R} e_2 + e_2 \Omega _{A/R} \epsilon $
 and the kernel of
$ \epsilon \Omega _{A/R} e_2 + e_2 \Omega _{A/R} \epsilon $
 and the kernel of 
 $\mathrm {Tr}: D_{{A^+}/{R^+}} \to D_{A^f/R^f}$
 is
$\mathrm {Tr}: D_{{A^+}/{R^+}} \to D_{A^f/R^f}$
 is 
 $\epsilon D_{{A^+}/ {R^+}} e_2+ e_2D_{{A^+}/ {R^+}} \epsilon $
. The morphism
$\epsilon D_{{A^+}/ {R^+}} e_2+ e_2D_{{A^+}/ {R^+}} \epsilon $
. The morphism 
 $\iota ({\omega ^+})$
 maps the two kernels bijectively to each other as it is an
$\iota ({\omega ^+})$
 maps the two kernels bijectively to each other as it is an 
 ${A^+} \otimes _{{R^+} } {A^+}$
-linear isomorphism. Furthermore,
${A^+} \otimes _{{R^+} } {A^+}$
-linear isomorphism. Furthermore, 
 $\mathrm {Tr}: D_{{A^+}/ {R^+}} \to D_{A^f/R^f}$
 is surjective. As a consequence,
$\mathrm {Tr}: D_{{A^+}/ {R^+}} \to D_{A^f/R^f}$
 is surjective. As a consequence, 
 $\iota (\omega ^f)$
 is also an isomorphism proving that
$\iota (\omega ^f)$
 is also an isomorphism proving that 
 $\omega ^f$
 is non-degenerate. This shows that
$\omega ^f$
 is non-degenerate. This shows that 
 $\omega ^f$
 is a bisymplectic structure o,
$\omega ^f$
 is a bisymplectic structure o, 
 $A^f$
. The moment map
$A^f$
. The moment map 
 $\mu :=( \mu _i )_i$
 associated to
$\mu :=( \mu _i )_i$
 associated to 
 $\omega $
 is determined by the condition
$\omega $
 is determined by the condition 
 $d \mu _i =\iota _{E_i} (\omega )$
. Denote by
$d \mu _i =\iota _{E_i} (\omega )$
. Denote by 
 $F_i$
 for
$F_i$
 for 
 $i\neq 2$
 the gauge elements in
$i\neq 2$
 the gauge elements in 
 $A^f$
. By lemma 3.9,
$A^f$
. By lemma 3.9, 
 $$\begin{align*}d (\mu^f_i)=(d\mu_i)^f =( \iota_{E_i} (\omega))^f= \iota_{E_i^f} (\omega^f)= \iota_{F_i} (\omega^f)\end{align*}$$
$$\begin{align*}d (\mu^f_i)=(d\mu_i)^f =( \iota_{E_i} (\omega))^f= \iota_{E_i^f} (\omega^f)= \iota_{F_i} (\omega^f)\end{align*}$$
for 
 $ i \not = 1,2$
. We know from [Reference Van den Bergh30, Lemma 5.3.3] that
$ i \not = 1,2$
. We know from [Reference Van den Bergh30, Lemma 5.3.3] that 
 $F_1=E_1^f+E_2^f$
, so
$F_1=E_1^f+E_2^f$
, so 
 $$\begin{align*}d(\mu_1^{f\!\!f})=d(\mu_1^f+\mu_2^f)= \iota_{E_1^f} (\omega^f) + \iota_{E_2^f} (\omega^f) = \iota_{F_1} (\omega^f),\end{align*}$$
$$\begin{align*}d(\mu_1^{f\!\!f})=d(\mu_1^f+\mu_2^f)= \iota_{E_1^f} (\omega^f) + \iota_{E_2^f} (\omega^f) = \iota_{F_1} (\omega^f),\end{align*}$$
as expected.
4.3 From Calabi–Yau structures to bisymplectic structures
 Let 
 ${\mathcal C}$
 be a k-linear category with set of objects
${\mathcal C}$
 be a k-linear category with set of objects 
 $I=\{1, \dots , n\}$
 (in particular, we assume that
$I=\{1, \dots , n\}$
 (in particular, we assume that 
 $\mathcal {C}$
 is concentrated in degree
$\mathcal {C}$
 is concentrated in degree 
 $0$
). Set
$0$
). Set 
 $e_i=\mathrm {id}_i$
,
$e_i=\mathrm {id}_i$
, 
 $R= \oplus _{i\in I} ke_i$
,
$R= \oplus _{i\in I} ke_i$
, 
 $\hat {\mathcal R}= \coprod _{i\in I} k[x_i]$
 and
$\hat {\mathcal R}= \coprod _{i\in I} k[x_i]$
 and 
 $A=A_{\mathcal {C}}$
. Note that
$A=A_{\mathcal {C}}$
. Note that 
 $\hat {R}:=A_{\hat {\mathcal R}}\simeq \bigoplus _{i\in I} k[x_i]$
. We assume that we are given an endomorphism of each object i. This amounts to having a k-linear functor
$\hat {R}:=A_{\hat {\mathcal R}}\simeq \bigoplus _{i\in I} k[x_i]$
. We assume that we are given an endomorphism of each object i. This amounts to having a k-linear functor 
 $\mu : \hat {\mathcal R} \to {\mathcal C}$
 or, equivalently, an R-algebra morphism
$\mu : \hat {\mathcal R} \to {\mathcal C}$
 or, equivalently, an R-algebra morphism 
 $\hat {\mathcal R}\to A$
. Let us set
$\hat {\mathcal R}\to A$
. Let us set 
 $\mu _i:=\mu (x_i) \in e_iA e_i$
.
$\mu _i:=\mu (x_i) \in e_iA e_i$
.
Theorem 4.8. Assume we have a relative 
 $1$
-Calabi–Yau structure on
$1$
-Calabi–Yau structure on 
 $\mu : \hat {\mathcal R} \to \mathcal {C}$
 inducing the natural Calabi–Yau structure on each
$\mu : \hat {\mathcal R} \to \mathcal {C}$
 inducing the natural Calabi–Yau structure on each 
 $k[x_i]$
, and assume that
$k[x_i]$
, and assume that 
 $A_{\mathcal {C}}$
 is
$A_{\mathcal {C}}$
 is 
 $1$
-smooth. Then
$1$
-smooth. Then 
 $A_{\mathcal {C}}$
 is bisymplectic with moment map
$A_{\mathcal {C}}$
 is bisymplectic with moment map 
 $ \sum _{i=1}^n \mu _i$
.
$ \sum _{i=1}^n \mu _i$
.
Proof. The 
 $1$
-Calabi–Yau structure gives a homotopy
$1$
-Calabi–Yau structure gives a homotopy 
 $0 \sim \mu ( \sum _{i=1}^n 1\otimes x_i) = \sum _{i=1}^n 1\otimes \mu _i$
 which yields, thanks to section 2.3, an element
$0 \sim \mu ( \sum _{i=1}^n 1\otimes x_i) = \sum _{i=1}^n 1\otimes \mu _i$
 which yields, thanks to section 2.3, an element 
 $\omega _1 \in \Omega _R^2(A)$
 satisfying
$\omega _1 \in \Omega _R^2(A)$
 satisfying 
 $ \iota _{E} (\omega _1)= \sum _{i=1}^n d\mu _i$
. Hence,
$ \iota _{E} (\omega _1)= \sum _{i=1}^n d\mu _i$
. Hence, 
 $ \mu $
 is a moment map for
$ \mu $
 is a moment map for 
 $\omega _1$
.
$\omega _1$
.
 It remains to show that 
 $\omega _1$
 is closed and non-degenerate. First, note that
$\omega _1$
 is closed and non-degenerate. First, note that 
 $\gamma :=\sum _{i=1}^n 1\otimes x_i\in \Omega _R^1\hat {R}$
 trivially lifts in negative cyclic homology as
$\gamma :=\sum _{i=1}^n 1\otimes x_i\in \Omega _R^1\hat {R}$
 trivially lifts in negative cyclic homology as 
 $B(\gamma )=0$
. Then the Calabi–Yau structure is given by a family
$B(\gamma )=0$
. Then the Calabi–Yau structure is given by a family 
 $\omega _k \in \bar {\Omega }_R^{2k} A$
, satisfying
$\omega _k \in \bar {\Omega }_R^{2k} A$
, satisfying 
 $$\begin{align*}(\iota_E-ud )\left(\sum_{k\ge0} u^k\omega_{k+1}\right)= \mu( \gamma),\end{align*}$$
$$\begin{align*}(\iota_E-ud )\left(\sum_{k\ge0} u^k\omega_{k+1}\right)= \mu( \gamma),\end{align*}$$
which implies 
 $ d\omega _1=\iota _E (\omega _2)=0\in \overline {\mathrm {DR}}_RA$
. This proves the closedness of
$ d\omega _1=\iota _E (\omega _2)=0\in \overline {\mathrm {DR}}_RA$
. This proves the closedness of 
 $\omega _1$
.
$\omega _1$
.
The (Calabi–Yau) non-degeneration property yields the homotopy fiber sequence
 $$\begin{align*}A^{\vee}[1]\to R^{\vee}[1]\otimes_{R^e}A^e\overset{\gamma_1}{\simeq} R\otimes_{R^e}A^e\to A. \end{align*}$$
$$\begin{align*}A^{\vee}[1]\to R^{\vee}[1]\otimes_{R^e}A^e\overset{\gamma_1}{\simeq} R\otimes_{R^e}A^e\to A. \end{align*}$$
Using short resolutions (thanks to the 
 $1$
-smoothness of A), we get the homotopy commuting diagram
$1$
-smoothness of A), we get the homotopy commuting diagram 

The homotopy is given by 
 $\iota (\omega _1): D_{A/R}\to \Omega _{A/R}$
$\iota (\omega _1): D_{A/R}\to \Omega _{A/R}$
Now, as the Calabi–Yau structure is non-degenerate, we have
 $$\begin{align*}A^{\vee}[1]\simeq\mathrm{hofib}\left( R^{\vee}[1]\otimes_{R^e}A^e\overset{\gamma_1}{\simeq} R\otimes_{R^e}A^e\to A\right).\end{align*}$$
$$\begin{align*}A^{\vee}[1]\simeq\mathrm{hofib}\left( R^{\vee}[1]\otimes_{R^e}A^e\overset{\gamma_1}{\simeq} R\otimes_{R^e}A^e\to A\right).\end{align*}$$
In short resolutions, this yields a quasi-isomorphism between the vertical complexes

which, in particular, gives an isomorphism 
 $\iota (\omega _1): D_{A/R} \to \Omega _{A/R}.$
$\iota (\omega _1): D_{A/R} \to \Omega _{A/R}.$
Example 4.9. Let 
 $Q=(I,E)$
 be a finite quiver where I is the set of vertices and E the set of arrows. Denote by
$Q=(I,E)$
 be a finite quiver where I is the set of vertices and E the set of arrows. Denote by 
 $\overline {Q}$
 the double quiver obtained by adding for every arrow
$\overline {Q}$
 the double quiver obtained by adding for every arrow 
 $a\in E$
 an arrow
$a\in E$
 an arrow 
 $a^*$
 in the opposite direction. Consider the path algebra of the double quiver
$a^*$
 in the opposite direction. Consider the path algebra of the double quiver 
 $A:=k \overline {Q}$
. We have
$A:=k \overline {Q}$
. We have 
- 
• a relative  $1$
-Calabi–Yau structure on $1$
-Calabi–Yau structure on $ \mu : k[x] \to A$
, $ \mu : k[x] \to A$
, $x\mapsto \sum _{a\in E}[a,a^*]$
 from example 4.3; $x\mapsto \sum _{a\in E}[a,a^*]$
 from example 4.3;
- 
• a bisymplectic structure  $\omega =\sum _{a\in E}dada^* \in \overline {\mathrm {DR}}_R^2A$
 on A given in [Reference Crawley-Boevey, Etingof and Ginzburg9, Proposition 8.1.1], with moment map $\omega =\sum _{a\in E}dada^* \in \overline {\mathrm {DR}}_R^2A$
 on A given in [Reference Crawley-Boevey, Etingof and Ginzburg9, Proposition 8.1.1], with moment map $\mu $
. $\mu $
.
We claim that the first structure implies (twice) the second one under theorem 4.8. Indeed, the homotopy between 
 $0$
 and
$0$
 and 
 $\mu (1\otimes x)$
 is given by
$\mu (1\otimes x)$
 is given by 
 $\sum _{a\in E}(1\otimes a\otimes a^*-1\otimes a^*\otimes a)$
 which corresponds to
$\sum _{a\in E}(1\otimes a\otimes a^*-1\otimes a^*\otimes a)$
 which corresponds to 
 $2\sum _{a\in E}dada^*$
.
$2\sum _{a\in E}dada^*$
.
 We next investigate the relationship between fusion of bisymplectic structures and relate them to the compositions of Calabi–Yau cospans. Consider a dg-category 
 $\mathcal {C}$
 with object set I, along with a relative
$\mathcal {C}$
 with object set I, along with a relative 
 $1$
-Calabi–Yau structure
$1$
-Calabi–Yau structure 
 $\mu : \hat {\mathcal R}\to \mathcal {C}$
 that induces natural absolute Calabi–Yau structures on each
$\mu : \hat {\mathcal R}\to \mathcal {C}$
 that induces natural absolute Calabi–Yau structures on each 
 $k[x_i]$
. Set
$k[x_i]$
. Set 
 $\hat {\mathcal R}_{\ge 3}= \coprod _{i\ge 3} k[x_i]$
. We can consider the composition of cospans
$\hat {\mathcal R}_{\ge 3}= \coprod _{i\ge 3} k[x_i]$
. We can consider the composition of cospans 

defining 
 ${\mathcal C}^f$
, where z is mapped to
${\mathcal C}^f$
, where z is mapped to 
 $x_1+x_2$
. This yields a relative Calabi–Yau structure on
$x_1+x_2$
. This yields a relative Calabi–Yau structure on 
 $$ \begin{align} k[z] \amalg\hat{\mathcal R}_{\ge3} \to {\mathcal C}^f.\end{align} $$
$$ \begin{align} k[z] \amalg\hat{\mathcal R}_{\ge3} \to {\mathcal C}^f.\end{align} $$
Theorem 4.10. Assume that 
 $A_{\mathcal {C}}$
 is
$A_{\mathcal {C}}$
 is 
 $1$
-smooth. Let
$1$
-smooth. Let 
 $(A_{\mathcal {C}}, \omega )$
 be the bisymplectic structure induced by the relative 1-Calabi–Yau structure
$(A_{\mathcal {C}}, \omega )$
 be the bisymplectic structure induced by the relative 1-Calabi–Yau structure 
 $\mu $
, thanks to theorem 4.8. Then the fusion bisymplectic structure
$\mu $
, thanks to theorem 4.8. Then the fusion bisymplectic structure 
 $(A_{\mathcal {C}}^f, \omega ^f)$
 obtained from fusing the two objects
$(A_{\mathcal {C}}^f, \omega ^f)$
 obtained from fusing the two objects 
 $1$
 and
$1$
 and 
 $2$
 is induced by the relative
$2$
 is induced by the relative 
 $1$
-Calabi–Yau structure (4.3).
$1$
-Calabi–Yau structure (4.3).
Proof. Set 
 $A=A_{\mathcal {C}}$
. We know, thanks to proposition 3.3, that
$A=A_{\mathcal {C}}$
. We know, thanks to proposition 3.3, that 
 $A^f \simeq A_{ {\mathcal C}^f}$
. As the bisymplectic structure is compatible with the relative 1-Calabi–Yau structure, we have that the image of z under this isomorphism is
$A^f \simeq A_{ {\mathcal C}^f}$
. As the bisymplectic structure is compatible with the relative 1-Calabi–Yau structure, we have that the image of z under this isomorphism is 
 $\mu (x_1)^f+\mu (x_2)^f$
. Hence, the moment map of the fusion bisymplectic structure is induced from the Calabi–Yau cospan. Let
$\mu (x_1)^f+\mu (x_2)^f$
. Hence, the moment map of the fusion bisymplectic structure is induced from the Calabi–Yau cospan. Let 
 $\omega \in \Omega _R^2( A)$
 denote the homotopy
$\omega \in \Omega _R^2( A)$
 denote the homotopy 
 $ \mu (1\otimes (\sum _{i\in I} x_i)) \sim 0$
 of the Calabi–Yau structure which induces by assumption the bisymplectic structure on A. Since the homotopy between the 1-forms in the cospan
$ \mu (1\otimes (\sum _{i\in I} x_i)) \sim 0$
 of the Calabi–Yau structure which induces by assumption the bisymplectic structure on A. Since the homotopy between the 1-forms in the cospan 
 $$\begin{align*}k[z] \amalg\hat{\mathcal R}_{\ge3} \longrightarrow k\langle x_1, x_2 \rangle \amalg\hat{\mathcal R}_{\ge3} \longleftarrow \hat{\mathcal R} \end{align*}$$
$$\begin{align*}k[z] \amalg\hat{\mathcal R}_{\ge3} \longrightarrow k\langle x_1, x_2 \rangle \amalg\hat{\mathcal R}_{\ge3} \longleftarrow \hat{\mathcal R} \end{align*}$$
is trivial, the zero-homotopy of the composition of Calabi–Yau cospans is given by the image of 
 $\omega $
 under the map
$\omega $
 under the map 
 $\nu $
 from lemma 3.8. But it is proven there that this image is
$\nu $
 from lemma 3.8. But it is proven there that this image is 
 $\omega ^f$
, which is precisely what we want.
$\omega ^f$
, which is precisely what we want.
 To summarize, we have proven that the following diagram commutes, with 
 $R^f\simeq \oplus _{i\in I\setminus \{2\}}ke_i$
 and
$R^f\simeq \oplus _{i\in I\setminus \{2\}}ke_i$
 and 
 $\hat {\mathcal R}^f\simeq \amalg _{i\in I\setminus \{2\}}k[x_i]$
.
$\hat {\mathcal R}^f\simeq \amalg _{i\in I\setminus \{2\}}k[x_i]$
. 

5 Calabi–Yau versus quasi-bisymplectic structures
 We prove in this section that relative Calabi–Yau structures on 
 $k[x^{\pm 1}] \to \mathcal {C}$
,
$k[x^{\pm 1}] \to \mathcal {C}$
, 
 $\mathcal {C}$
 a k-linear dg-category, induces quasi-bisymplectic ones on
$\mathcal {C}$
 a k-linear dg-category, induces quasi-bisymplectic ones on 
 $A_{\mathcal {C}}$
, in the sense of [Reference Van den Bergh31]. We prove again that fusion of quasi-bisymplectic structures on
$A_{\mathcal {C}}$
, in the sense of [Reference Van den Bergh31]. We prove again that fusion of quasi-bisymplectic structures on 
 $A_{\mathcal {C}}$
 is induced by the composition of Calabi–Yau cospans with the multiplicative pair-of-pants.
$A_{\mathcal {C}}$
 is induced by the composition of Calabi–Yau cospans with the multiplicative pair-of-pants.
5.1 Quasi-bisymplectic structures
Consider an R-algebra A.
Definition 5.1 [Reference Van den Bergh31].
 A quasi-bisymplectic algebra is a triple 
 $(A,\omega ,\Phi )$
, where
$(A,\omega ,\Phi )$
, where 
 and
 and 
 $\Phi \in A^{\ast }$
, satisfying the following conditions:
$\Phi \in A^{\ast }$
, satisfying the following conditions:
- 
(  $\mathbb {B}$
1) $\mathbb {B}$
1) $d\omega =\frac {1}{6} (\Phi ^{-1} d\Phi )^3\quad \mod [-,-]$
. $d\omega =\frac {1}{6} (\Phi ^{-1} d\Phi )^3\quad \mod [-,-]$
.
- 
(  $\mathbb {B}$
2) $\mathbb {B}$
2) $\imath _{E}\omega =\frac {1}{2} (\Phi ^{-1}d\Phi +d\Phi \Phi ^{-1})$ $\imath _{E}\omega =\frac {1}{2} (\Phi ^{-1}d\Phi +d\Phi \Phi ^{-1})$
- 
(  $\mathbb {B}$
3) The map is surjective. $\mathbb {B}$
3) The map is surjective. $$\begin{align*}D_{A/R}\oplus Ad\Phi A\rightarrow \Omega_A :(\delta,\eta)\mapsto \imath(\omega)(\delta)+\eta \end{align*}$$ $$\begin{align*}D_{A/R}\oplus Ad\Phi A\rightarrow \Omega_A :(\delta,\eta)\mapsto \imath(\omega)(\delta)+\eta \end{align*}$$
 Recall from [Reference Van den Bergh31, Theorem 7.1] the 
 $A\otimes _RA$
-linear map
$A\otimes _RA$
-linear map 
 $T:\Omega _{A/R} \stackrel {e} \rightarrow A E^* A \stackrel {T^0} \rightarrow A d\Phi A \stackrel {c} \rightarrow \Omega _{A/R}$
, where c denotes the canonical embedding, e denotes the adjoint of c and
$T:\Omega _{A/R} \stackrel {e} \rightarrow A E^* A \stackrel {T^0} \rightarrow A d\Phi A \stackrel {c} \rightarrow \Omega _{A/R}$
, where c denotes the canonical embedding, e denotes the adjoint of c and 
 $T^0$
 is uniquely determined by
$T^0$
 is uniquely determined by 
 $T^0(E^*)=\Phi ^{-1} d\Phi -d\Phi \Phi ^{-1}$
.
$T^0(E^*)=\Phi ^{-1} d\Phi -d\Phi \Phi ^{-1}$
.
Definition 5.2. We say that a triple 
 $(\omega ,P, \Phi )\in \Omega _R^2(A)\times D_R^2(A)\times A^*$
 is compatible if
$(\omega ,P, \Phi )\in \Omega _R^2(A)\times D_R^2(A)\times A^*$
 is compatible if 
 $\iota (\omega ) \iota (P)=1-\frac {1}{4}T$
.
$\iota (\omega ) \iota (P)=1-\frac {1}{4}T$
.
 What is proved by [Reference Van den Bergh31, Theorem 7.1] is that each quasi-bisymplectic structure of 
 corresponds to a unique non-degenerate double quasi-Poisson bracket in
 corresponds to a unique non-degenerate double quasi-Poisson bracket in 
 $(D_RA/[D_RA,D_RA])_2$
. We will not recall the definition of the latter here.
$(D_RA/[D_RA,D_RA])_2$
. We will not recall the definition of the latter here.
Lemma 5.3. Let 
 $(\omega , P,\Phi )$
 be a compatible triple on A such that
$(\omega , P,\Phi )$
 be a compatible triple on A such that 
 $(\omega ,\Phi )$
 is quasi-bisymplectic. Then
$(\omega ,\Phi )$
 is quasi-bisymplectic. Then 
 $({\omega ^+},{\Phi ^+})$
 is quasi-bisymplectic on
$({\omega ^+},{\Phi ^+})$
 is quasi-bisymplectic on 
 $A^+$
 and
$A^+$
 and 
 $({\omega ^+}, P^+,{\Phi ^+})$
 is also compatible.
$({\omega ^+}, P^+,{\Phi ^+})$
 is also compatible.
Proof. The compatibility condition is given by 
 $\iota (\omega ) \iota (P)=1-\frac {1}{4}T$
. Since R is semi-simple,
$\iota (\omega ) \iota (P)=1-\frac {1}{4}T$
. Since R is semi-simple, 
 $-\otimes _R {R^+}$
 is exact. Recall also that
$-\otimes _R {R^+}$
 is exact. Recall also that 
 $\Omega _{{A^+}/{R^+}} \simeq \Omega _{A/R} \otimes _R {R^+}$
 and
$\Omega _{{A^+}/{R^+}} \simeq \Omega _{A/R} \otimes _R {R^+}$
 and 
 $D_{{A^+}/{R^+}} \simeq D_{A/R} \otimes _R {R^+}$
. From this, it follows immediately that
$D_{{A^+}/{R^+}} \simeq D_{A/R} \otimes _R {R^+}$
. From this, it follows immediately that 
 $({\omega ^+}, {\Phi ^+})$
 is a quasi-bisymplectic structure. Now by functoriality of the extension of scalar functor
$({\omega ^+}, {\Phi ^+})$
 is a quasi-bisymplectic structure. Now by functoriality of the extension of scalar functor 
 $-\otimes _R {R^+}$
, we obtain that
$-\otimes _R {R^+}$
, we obtain that 
 $\iota ( \omega ^+) \iota ( P^+)=1-\frac {1}{4} T^+$
.
$\iota ( \omega ^+) \iota ( P^+)=1-\frac {1}{4} T^+$
.
 Assume that 
 $R=\oplus _{i\in I}ke_i$
 is based on pairwise orthogonal idempotents. Let
$R=\oplus _{i\in I}ke_i$
 is based on pairwise orthogonal idempotents. Let 
 $(\omega , P,\Phi )$
 be a compatible triple on A such that
$(\omega , P,\Phi )$
 be a compatible triple on A such that 
 $(\omega ,\Phi )$
 is quasi-bisymplectic and assume that
$(\omega ,\Phi )$
 is quasi-bisymplectic and assume that 
 $\Phi =(\Phi _i)_{i\in I}\in \oplus _{i\in I}e_i A^{\ast } e_i$
. Set
$\Phi =(\Phi _i)_{i\in I}\in \oplus _{i\in I}e_i A^{\ast } e_i$
. Set 
 $\Phi _1^{f\!\!f}=\Phi _1^f\Phi _2^f$
 and
$\Phi _1^{f\!\!f}=\Phi _1^f\Phi _2^f$
 and 
 $\Phi _i^{f\!\!f}=\Phi _i^f=\Phi _i$
 if
$\Phi _i^{f\!\!f}=\Phi _i^f=\Phi _i$
 if 
 $i>2$
. The following rather computational result is the noncommutative analog of [Reference Alekseev, Kosmann-Schwarzbach and Meinrenken1, Proposition 10.7].
$i>2$
. The following rather computational result is the noncommutative analog of [Reference Alekseev, Kosmann-Schwarzbach and Meinrenken1, Proposition 10.7].
Proposition 5.4. Set 
 $\omega _{\mathrm {cor}}=\frac {1}{2}(\Phi _1^f)^{-1}d\Phi _1^fd\Phi _2^f(\Phi _2^f)^{-1}$
. Then
$\omega _{\mathrm {cor}}=\frac {1}{2}(\Phi _1^f)^{-1}d\Phi _1^fd\Phi _2^f(\Phi _2^f)^{-1}$
. Then 
 $\omega ^{f\!\!f}:=\omega ^f-\omega _{\mathrm {cor}}$
 is compatible with
$\omega ^{f\!\!f}:=\omega ^f-\omega _{\mathrm {cor}}$
 is compatible with 
 $P^{f\!\!f}:=P^f+\frac {1}{2}E_1^fE_2^f$
.
$P^{f\!\!f}:=P^f+\frac {1}{2}E_1^fE_2^f$
.
Proof. We need to prove that 
 $\iota (\omega ^{f\!\!f})\iota (P^{f\!\!f})=1-\frac {1}{4}T^{f\!\!f}$
, which is equivalent to
$\iota (\omega ^{f\!\!f})\iota (P^{f\!\!f})=1-\frac {1}{4}T^{f\!\!f}$
, which is equivalent to 

Note that 
 $ A^+ \to A^f$
,
$ A^+ \to A^f$
, 
 $a \mapsto \mathrm {Tr}(a)$
 is surjective. Hence, it is sufficient to show compatibility on all images of
$a \mapsto \mathrm {Tr}(a)$
 is surjective. Hence, it is sufficient to show compatibility on all images of 
 $da\in \Omega _{{A^+}/{R^+}}$
. We will systematically use the notation
$da\in \Omega _{{A^+}/{R^+}}$
. We will systematically use the notation 
 $(-)^f=\mathrm {Tr}(-)$
 in the rest of this proof.
$(-)^f=\mathrm {Tr}(-)$
 in the rest of this proof.
 We have 
 $\Phi _1^{f\!\!f}=\Phi _1^f\Phi _2^f=\Phi _1^+e_{12}\Phi _2^+e_{21}$
 and
$\Phi _1^{f\!\!f}=\Phi _1^f\Phi _2^f=\Phi _1^+e_{12}\Phi _2^+e_{21}$
 and 
 $\Phi _i^{f\!\!f}=\Phi _i^f=\Phi _i$
 if
$\Phi _i^{f\!\!f}=\Phi _i^f=\Phi _i$
 if 
 $i>2$
. We abusively note
$i>2$
. We abusively note 
 $\Phi _i=\Phi _i^+$
, as they do not involve
$\Phi _i=\Phi _i^+$
, as they do not involve 
 $e_{ij}$
’s, so that
$e_{ij}$
’s, so that 
 $\Phi _i^f=\Phi _i$
 when
$\Phi _i^f=\Phi _i$
 when 
 $i\neq 2$
,
$i\neq 2$
, 
 $\Phi _2^f=e_{12}\Phi _2e_{21}$
 and we set
$\Phi _2^f=e_{12}\Phi _2e_{21}$
 and we set 
 $\Psi =\Phi _1^{f\!\!f}$
. Then for any
$\Psi =\Phi _1^{f\!\!f}$
. Then for any 
 $a\in A^+$
,
$a\in A^+$
, 
 $$ \begin{align*} (\mathrm{V})(da^f)&=T^{f\!\!f}(da^f)\\ &=[a^f,(\Phi^{f\!\!f})^{-1}d\Phi^{f\!\!f}-d\Phi^{f\!\!f}(\Phi^{f\!\!f})^{-1}]\\ &=[a^f,\Psi^{-1}d\Phi_1\Phi_2^f+(\Phi_2^f)^{-1}d\Phi_2^f-d\Phi_1\Phi_1^{-1}-\Phi_1d\Phi_2^f\Psi^{-1}]\\ &\qquad\qquad +\sum_{i>2}[a^f,\Phi_i^{-1}d\Phi_i-d\Phi_i\Phi_i^{-1}]\\ &=[a^f,\Psi^{-1}d\Phi_1\Phi_2^f+(\Phi_2^f)^{-1}d\Phi_2^f-d\Phi_1\Phi_1^{-1}-\Phi_1d\Phi_2^f\Psi^{-1}]\\ &\qquad\qquad +\sum_{i>2}\epsilon[a,\Phi_i^{-1}d\Phi_i-d\Phi_i\Phi_i^{-1}]\epsilon, \end{align*} $$
$$ \begin{align*} (\mathrm{V})(da^f)&=T^{f\!\!f}(da^f)\\ &=[a^f,(\Phi^{f\!\!f})^{-1}d\Phi^{f\!\!f}-d\Phi^{f\!\!f}(\Phi^{f\!\!f})^{-1}]\\ &=[a^f,\Psi^{-1}d\Phi_1\Phi_2^f+(\Phi_2^f)^{-1}d\Phi_2^f-d\Phi_1\Phi_1^{-1}-\Phi_1d\Phi_2^f\Psi^{-1}]\\ &\qquad\qquad +\sum_{i>2}[a^f,\Phi_i^{-1}d\Phi_i-d\Phi_i\Phi_i^{-1}]\\ &=[a^f,\Psi^{-1}d\Phi_1\Phi_2^f+(\Phi_2^f)^{-1}d\Phi_2^f-d\Phi_1\Phi_1^{-1}-\Phi_1d\Phi_2^f\Psi^{-1}]\\ &\qquad\qquad +\sum_{i>2}\epsilon[a,\Phi_i^{-1}d\Phi_i-d\Phi_i\Phi_i^{-1}]\epsilon, \end{align*} $$
whereas, thanks to lemma 3.9,
 $$ \begin{align*} (\mathrm{I})(da^f) &= \iota(\omega^f)\iota(P^f)(da^f)\\ &=\iota(\omega^f) \big(\iota(P)(da)\big)^{\!f} \\ &= \big( \iota(\omega) \iota( P) (da)\big)^{\!f}\\ &= \big(a-\frac{1}{4}T(da)\big)^{\!f} \\ &=a^f-\dfrac{1}{4}\epsilon[a,\Phi_1^{-1}d\Phi_1-d\Phi_1\Phi_1^{-1}]\epsilon-\dfrac{1}{4}e_{12}[a,\Phi_2^{-1}d\Phi_2-d\Phi_2\Phi_2^{-1}]e_{21}\\ &\qquad\qquad-\frac{1}{4}\sum_{i>2}\epsilon[a,\Phi_i^{-1}d\Phi_i-d\Phi_i\Phi_i^{-1}]\epsilon\\ &=a^f-\dfrac{1}{4}[\epsilon a\epsilon,\Phi_1^{-1}d\Phi_1-d\Phi_1\Phi_1^{-1}]\epsilon-\dfrac{1}{4}[e_{12}ae_{21},(\Phi_2^f)^{-1}d\Phi_2^f-d\Phi_2^f(\Phi_2^f)^{-1}]\\ &\qquad\qquad-\frac{1}{4}\sum_{i>2}\epsilon[a,\Phi_i^{-1}d\Phi_i-d\Phi_i\Phi_i^{-1}]\epsilon.\end{align*} $$
$$ \begin{align*} (\mathrm{I})(da^f) &= \iota(\omega^f)\iota(P^f)(da^f)\\ &=\iota(\omega^f) \big(\iota(P)(da)\big)^{\!f} \\ &= \big( \iota(\omega) \iota( P) (da)\big)^{\!f}\\ &= \big(a-\frac{1}{4}T(da)\big)^{\!f} \\ &=a^f-\dfrac{1}{4}\epsilon[a,\Phi_1^{-1}d\Phi_1-d\Phi_1\Phi_1^{-1}]\epsilon-\dfrac{1}{4}e_{12}[a,\Phi_2^{-1}d\Phi_2-d\Phi_2\Phi_2^{-1}]e_{21}\\ &\qquad\qquad-\frac{1}{4}\sum_{i>2}\epsilon[a,\Phi_i^{-1}d\Phi_i-d\Phi_i\Phi_i^{-1}]\epsilon\\ &=a^f-\dfrac{1}{4}[\epsilon a\epsilon,\Phi_1^{-1}d\Phi_1-d\Phi_1\Phi_1^{-1}]\epsilon-\dfrac{1}{4}[e_{12}ae_{21},(\Phi_2^f)^{-1}d\Phi_2^f-d\Phi_2^f(\Phi_2^f)^{-1}]\\ &\qquad\qquad-\frac{1}{4}\sum_{i>2}\epsilon[a,\Phi_i^{-1}d\Phi_i-d\Phi_i\Phi_i^{-1}]\epsilon.\end{align*} $$
Recall that for every 
 $\delta \in D_{A^f}$
,
$\delta \in D_{A^f}$
, 
 $$ \begin{align*} 2\iota(\omega_{\mathrm{cor}})(\delta)&={}^{\circ} i_{\delta}(\Phi_1^{-1}d\Phi_1d\Phi^f_2(\Phi_2^f)^{-1})\\ &={}^{\circ}(\Phi_1^{-1}\delta\Phi_1d\Phi^f_2(\Phi_2^f)^{-1}-\Phi_1^{-1}d\Phi_1\delta\Phi^f_2(\Phi_2^f)^{-1})\\ &=\delta(\Phi_1)"d\Phi^f_2\Psi^{-1}\delta(\Phi_1)'-\delta(\Phi_2^f)"\Psi^{-1}d\Phi_1\delta(\Phi^f_2)', \end{align*} $$
$$ \begin{align*} 2\iota(\omega_{\mathrm{cor}})(\delta)&={}^{\circ} i_{\delta}(\Phi_1^{-1}d\Phi_1d\Phi^f_2(\Phi_2^f)^{-1})\\ &={}^{\circ}(\Phi_1^{-1}\delta\Phi_1d\Phi^f_2(\Phi_2^f)^{-1}-\Phi_1^{-1}d\Phi_1\delta\Phi^f_2(\Phi_2^f)^{-1})\\ &=\delta(\Phi_1)"d\Phi^f_2\Psi^{-1}\delta(\Phi_1)'-\delta(\Phi_2^f)"\Psi^{-1}d\Phi_1\delta(\Phi^f_2)', \end{align*} $$
and that for every 
 $a\in A$
, we have
$a\in A$
, we have 
 $\iota (P)(da)=H_a$
, the Hamiltonian vector field which satisfies
$\iota (P)(da)=H_a$
, the Hamiltonian vector field which satisfies 
 $$\begin{align*}H_a(\Phi)=-\dfrac{1}{2}(\Phi E+E\Phi)(a)^{\circ}.\end{align*}$$
$$\begin{align*}H_a(\Phi)=-\dfrac{1}{2}(\Phi E+E\Phi)(a)^{\circ}.\end{align*}$$
It implies (recall that the bimodule structure on double derivations is induced by the inner one on 
 $A\otimes _RA$
)
$A\otimes _RA$
) 
 $$ \begin{align*} 2H^f_a(\Phi_1^f)&=2(\epsilon H_a\epsilon+e_{12}H_ae_{21})(\Phi_1)\\ &=-(\epsilon\Phi_1E_1\epsilon+\epsilon E_1\Phi_1\epsilon+e_{12}\Phi_1E_1e_{21}+e_{12} E_1\Phi_1e_{21})(a)^{\circ}\\ &=-(\Phi_1E_1\epsilon+\epsilon E_1\Phi_1)(a)^{\circ}\\ &=-(a\epsilon\otimes \Phi_1-\epsilon\otimes \Phi_1a+a\Phi_1\otimes \epsilon-\Phi_1\otimes \epsilon a)^{\circ}\\ &=-\Phi_1\otimes a\epsilon+\Phi_1a\otimes \epsilon-\epsilon\otimes a\Phi_1+\epsilon a\otimes \Phi_1\\ &=-\Phi_1\otimes \epsilon a \epsilon+\Phi_1\epsilon a \epsilon\otimes e_1-e_1\otimes \epsilon a \epsilon\Phi_1+\epsilon a \epsilon\otimes \Phi_1 \end{align*} $$
$$ \begin{align*} 2H^f_a(\Phi_1^f)&=2(\epsilon H_a\epsilon+e_{12}H_ae_{21})(\Phi_1)\\ &=-(\epsilon\Phi_1E_1\epsilon+\epsilon E_1\Phi_1\epsilon+e_{12}\Phi_1E_1e_{21}+e_{12} E_1\Phi_1e_{21})(a)^{\circ}\\ &=-(\Phi_1E_1\epsilon+\epsilon E_1\Phi_1)(a)^{\circ}\\ &=-(a\epsilon\otimes \Phi_1-\epsilon\otimes \Phi_1a+a\Phi_1\otimes \epsilon-\Phi_1\otimes \epsilon a)^{\circ}\\ &=-\Phi_1\otimes a\epsilon+\Phi_1a\otimes \epsilon-\epsilon\otimes a\Phi_1+\epsilon a\otimes \Phi_1\\ &=-\Phi_1\otimes \epsilon a \epsilon+\Phi_1\epsilon a \epsilon\otimes e_1-e_1\otimes \epsilon a \epsilon\Phi_1+\epsilon a \epsilon\otimes \Phi_1 \end{align*} $$
and
 $$ \begin{align*} 2H^f_a(\Phi_2^f)&=2e_{12}(\epsilon H_a\epsilon+e_{12}H_ae_{21})(\Phi_2)e_{21}\\ &=-\big(e_{12}(\epsilon\Phi_2E_2\epsilon+\epsilon E_2\Phi_2\epsilon+e_{12}\Phi_2E_2e_{21}+e_{12} E_2\Phi_2e_{21})(a)e_{21}\big)^{\!\circ}\\ &=-\big(e_{12}(e_{12}\Phi_2E_2e_{21}+e_{12} E_2\Phi_2e_{21})(a)e_{21}\big)^{\!\circ}\\ &=-\big(e_{12}ae_{21}\otimes e_{12}\Phi_2e_{21}-e_{12}e_{21}\otimes e_{12} \Phi_2ae_{21}\\ &\qquad\qquad+e_{12}a\Phi_2e_{21}\otimes e_{12}e_2e_{21}-e_{12}\Phi_2e_{21}\otimes e_{12}e_2ae_{21}\big)^{\!\circ}\\ &=-\big(e_{12}ae_{21}\otimes \Phi_2^f-e_{1}\otimes\Phi_2^fe_{12}ae_{21}+e_{12}ae_{21}\Phi_2^f\otimes e_{1}-\Phi_2^f\otimes e_{12}ae_{21}\big)^{\!\circ}\\ &=-\Phi_2^f\otimes e_{12}ae_{21}+\Phi_2^fe_{12}ae_{21}\otimes e_{1}-e_1\otimes e_{12}ae_{21}\Phi_2^f+e_{12}ae_{21}\otimes\Phi_2^f. \end{align*} $$
$$ \begin{align*} 2H^f_a(\Phi_2^f)&=2e_{12}(\epsilon H_a\epsilon+e_{12}H_ae_{21})(\Phi_2)e_{21}\\ &=-\big(e_{12}(\epsilon\Phi_2E_2\epsilon+\epsilon E_2\Phi_2\epsilon+e_{12}\Phi_2E_2e_{21}+e_{12} E_2\Phi_2e_{21})(a)e_{21}\big)^{\!\circ}\\ &=-\big(e_{12}(e_{12}\Phi_2E_2e_{21}+e_{12} E_2\Phi_2e_{21})(a)e_{21}\big)^{\!\circ}\\ &=-\big(e_{12}ae_{21}\otimes e_{12}\Phi_2e_{21}-e_{12}e_{21}\otimes e_{12} \Phi_2ae_{21}\\ &\qquad\qquad+e_{12}a\Phi_2e_{21}\otimes e_{12}e_2e_{21}-e_{12}\Phi_2e_{21}\otimes e_{12}e_2ae_{21}\big)^{\!\circ}\\ &=-\big(e_{12}ae_{21}\otimes \Phi_2^f-e_{1}\otimes\Phi_2^fe_{12}ae_{21}+e_{12}ae_{21}\Phi_2^f\otimes e_{1}-\Phi_2^f\otimes e_{12}ae_{21}\big)^{\!\circ}\\ &=-\Phi_2^f\otimes e_{12}ae_{21}+\Phi_2^fe_{12}ae_{21}\otimes e_{1}-e_1\otimes e_{12}ae_{21}\Phi_2^f+e_{12}ae_{21}\otimes\Phi_2^f. \end{align*} $$
We thus obtain
 $$ \begin{align*} 4(\mathrm{III})(da^f)&=4\iota(\omega_{\mathrm{cor}})\iota(P^f)(da^f)\\ &=4\iota(\omega_{\mathrm{cor}})(H_a^f)\\ &=2H^f_a(\Phi_1)"d\Phi_2^f\Psi^{-1}H^f_a(\Phi_1)'-2H^f_a(\Phi_2^f)"\Psi^{-1}d\Phi_1H^f_a(\Phi_2^f)'\\ &=-e_1ad\Phi_2^f\Psi^{-1}\Phi_1+d\Phi_2^f\Psi^{-1}\Phi_1ae_1-e_1a\Phi_1d\Phi_2^f\Psi^{-1}+\Phi_1d\Phi_2^f\Psi^{-1}ae_1\\ &+e_{12}ae_{21}\Psi^{-1}d\Phi_1\Phi_2^f-\Psi^{-1}d\Phi_1\Phi_2^fe_{12}ae_{21}+e_{12}ae_{21}\Phi_2^f\Psi^{-1}d\Phi_1-\Phi_2^f\Psi^{-1}d\Phi_1e_{12}ae_{21}\\ &=-\epsilon a \epsilon d\Phi_2^f(\Phi_2^f)^{-1}+d\Phi_2^f(\Phi_2^f)^{-1}\epsilon a \epsilon-\epsilon a \epsilon\Phi_1d\Phi_2^f\Psi^{-1}+\Phi_1d\Phi_2^f\Psi^{-1}\epsilon a \epsilon\\ &+e_{12}ae_{21}\Psi^{-1}d\Phi_1\Phi_2^f-\Psi^{-1}d\Phi_1\Phi_2^fe_{12}ae_{21}+e_{12}ae_{21}\Phi_1^{-1}d\Phi_1-\Phi_1^{-1}d\Phi_1e_{12}ae_{21}\\ &=-[\epsilon a \epsilon,d\Phi_2^f(\Phi_2^f)^{-1}+\Phi_1d\Phi_2^f\Psi^{-1}]+[e_{12}ae_{21},\Psi^{-1}d\Phi_1\Phi_2^f+\Phi_1^{-1}d\Phi_1]. \end{align*} $$
$$ \begin{align*} 4(\mathrm{III})(da^f)&=4\iota(\omega_{\mathrm{cor}})\iota(P^f)(da^f)\\ &=4\iota(\omega_{\mathrm{cor}})(H_a^f)\\ &=2H^f_a(\Phi_1)"d\Phi_2^f\Psi^{-1}H^f_a(\Phi_1)'-2H^f_a(\Phi_2^f)"\Psi^{-1}d\Phi_1H^f_a(\Phi_2^f)'\\ &=-e_1ad\Phi_2^f\Psi^{-1}\Phi_1+d\Phi_2^f\Psi^{-1}\Phi_1ae_1-e_1a\Phi_1d\Phi_2^f\Psi^{-1}+\Phi_1d\Phi_2^f\Psi^{-1}ae_1\\ &+e_{12}ae_{21}\Psi^{-1}d\Phi_1\Phi_2^f-\Psi^{-1}d\Phi_1\Phi_2^fe_{12}ae_{21}+e_{12}ae_{21}\Phi_2^f\Psi^{-1}d\Phi_1-\Phi_2^f\Psi^{-1}d\Phi_1e_{12}ae_{21}\\ &=-\epsilon a \epsilon d\Phi_2^f(\Phi_2^f)^{-1}+d\Phi_2^f(\Phi_2^f)^{-1}\epsilon a \epsilon-\epsilon a \epsilon\Phi_1d\Phi_2^f\Psi^{-1}+\Phi_1d\Phi_2^f\Psi^{-1}\epsilon a \epsilon\\ &+e_{12}ae_{21}\Psi^{-1}d\Phi_1\Phi_2^f-\Psi^{-1}d\Phi_1\Phi_2^fe_{12}ae_{21}+e_{12}ae_{21}\Phi_1^{-1}d\Phi_1-\Phi_1^{-1}d\Phi_1e_{12}ae_{21}\\ &=-[\epsilon a \epsilon,d\Phi_2^f(\Phi_2^f)^{-1}+\Phi_1d\Phi_2^f\Psi^{-1}]+[e_{12}ae_{21},\Psi^{-1}d\Phi_1\Phi_2^f+\Phi_1^{-1}d\Phi_1]. \end{align*} $$
Also,
 $$ \begin{align*} 2\iota(\omega_{\mathrm{cor}})\iota(E_1^fE_2^f)(da^f)&=2\iota(\omega_{\mathrm{cor}}){}^{\circ}(i_{da^f}(E_1^f)E_2^f-E_1^fi_{da^f}(E_2^f))\\ &=2\iota(\omega_{\mathrm{cor}}){}^{\circ}(E_1^f(a^f)E_2^f-E_1^fE_2^f(a^f))\\ &=2\iota(\omega_{\mathrm{cor}})(e_1E_2^f\epsilon ae_1-e_1a\epsilon E_2^fe_1-e_{1}E_1^fe_{12}ae_{21}+e_{12}ae_{21}E_1^fe_{1})\\ &=e_1\iota(2\omega_{\mathrm{cor}})(E_2^f)\epsilon ae_1-e_1a\epsilon\iota(2\omega_{\mathrm{cor}})(E_2^f)e_1\\ &\qquad-e_1{\iota(2\omega_{\mathrm{cor}})({E_1^f})}e_{12}ae_{21}+e_{12}ae_{21}\iota(2\omega_{\mathrm{cor}})(E_1^f)e_{1}. \end{align*} $$
$$ \begin{align*} 2\iota(\omega_{\mathrm{cor}})\iota(E_1^fE_2^f)(da^f)&=2\iota(\omega_{\mathrm{cor}}){}^{\circ}(i_{da^f}(E_1^f)E_2^f-E_1^fi_{da^f}(E_2^f))\\ &=2\iota(\omega_{\mathrm{cor}}){}^{\circ}(E_1^f(a^f)E_2^f-E_1^fE_2^f(a^f))\\ &=2\iota(\omega_{\mathrm{cor}})(e_1E_2^f\epsilon ae_1-e_1a\epsilon E_2^fe_1-e_{1}E_1^fe_{12}ae_{21}+e_{12}ae_{21}E_1^fe_{1})\\ &=e_1\iota(2\omega_{\mathrm{cor}})(E_2^f)\epsilon ae_1-e_1a\epsilon\iota(2\omega_{\mathrm{cor}})(E_2^f)e_1\\ &\qquad-e_1{\iota(2\omega_{\mathrm{cor}})({E_1^f})}e_{12}ae_{21}+e_{12}ae_{21}\iota(2\omega_{\mathrm{cor}})(E_1^f)e_{1}. \end{align*} $$
But
 $$ \begin{align*} E_1^f(a^f)&=\epsilon E_1^+(a)\epsilon+e_{12} E_1^+(a)e_{21}\\ &=\epsilon ae_1\otimes e_1\epsilon-\epsilon e_1\otimes e_1a\epsilon+e_{12}ae_1\otimes e_1e_{21}-e_{12}e_1\otimes e_1ae_{21}\\ &=\epsilon a\epsilon \otimes e_1- e_1\otimes \epsilon a\epsilon \end{align*} $$
$$ \begin{align*} E_1^f(a^f)&=\epsilon E_1^+(a)\epsilon+e_{12} E_1^+(a)e_{21}\\ &=\epsilon ae_1\otimes e_1\epsilon-\epsilon e_1\otimes e_1a\epsilon+e_{12}ae_1\otimes e_1e_{21}-e_{12}e_1\otimes e_1ae_{21}\\ &=\epsilon a\epsilon \otimes e_1- e_1\otimes \epsilon a\epsilon \end{align*} $$
and
 $$ \begin{align*} E_2^f(a^f)&=\epsilon(e_{12} E_2^+e_{21})(a)\epsilon+e_{12}(e_{12} E_2^+e_{21})(a)e_{21}\\ &=\epsilon ae_{21}\otimes e_{12}\epsilon-\epsilon e_{21}\otimes e_{12}a\epsilon+e_{12}ae_{21}\otimes e_{12}e_{21}-e_{12}e_{21}\otimes e_{12}ae_{21}\\ &=e_{12}ae_{21}\otimes e_{1}-e_{1}\otimes e_{12}ae_{21} \end{align*} $$
$$ \begin{align*} E_2^f(a^f)&=\epsilon(e_{12} E_2^+e_{21})(a)\epsilon+e_{12}(e_{12} E_2^+e_{21})(a)e_{21}\\ &=\epsilon ae_{21}\otimes e_{12}\epsilon-\epsilon e_{21}\otimes e_{12}a\epsilon+e_{12}ae_{21}\otimes e_{12}e_{21}-e_{12}e_{21}\otimes e_{12}ae_{21}\\ &=e_{12}ae_{21}\otimes e_{1}-e_{1}\otimes e_{12}ae_{21} \end{align*} $$
imply 
 $E_1^f(\Phi _1)=E_1(\Phi _1)$
,
$E_1^f(\Phi _1)=E_1(\Phi _1)$
, 
 $E_1^f(\Phi _2^f)=0$
,
$E_1^f(\Phi _2^f)=0$
, 
 $E_2^f(\Phi _1)=0$
,
$E_2^f(\Phi _1)=0$
, 
 $E_2^f(\Phi _2^f)=E_1(\Phi _2^f)$
 and
$E_2^f(\Phi _2^f)=E_1(\Phi _2^f)$
 and 
 $$ \begin{align*} \iota(2\omega_{\mathrm{cor}})(E_1^f)&=d\Phi^f_2(\Phi_2^f)^{-1}-\Phi_1d\Phi^f_2\Psi^{-1}\\ \iota(2\omega_{\mathrm{cor}})(E_2^f)&=-\Psi^{-1}d\Phi_1\Phi^f_2+\Phi_1^{-1}d\Phi_1. \end{align*} $$
$$ \begin{align*} \iota(2\omega_{\mathrm{cor}})(E_1^f)&=d\Phi^f_2(\Phi_2^f)^{-1}-\Phi_1d\Phi^f_2\Psi^{-1}\\ \iota(2\omega_{\mathrm{cor}})(E_2^f)&=-\Psi^{-1}d\Phi_1\Phi^f_2+\Phi_1^{-1}d\Phi_1. \end{align*} $$
Hence,
 $$ \begin{align*} 2(\mathrm{II})(da^f)&=2\iota(\omega_{\mathrm{cor}})\iota(E_1^fE_2^f)(da^f)\\ &=e_1(-\Psi^{-1}d\Phi_1\Phi^f_2+\Phi_1^{-1}d\Phi_1)\epsilon a\epsilon-\epsilon a\epsilon(-\Psi^{-1}d\Phi_1\Phi^f_2+\Phi_1^{-1}d\Phi_1)e_1\\ &-e_1(d\Phi^f_2(\Phi_2^f)^{-1}-\Phi_1d\Phi^f_2\Psi^{-1})e_{12}ae_{21}+e_{12}ae_{21}(d\Phi^f_2(\Phi_2^f)^{-1}-\Phi_1d\Phi^f_2\Psi^{-1})e_{1}\\ & =[e_{12} a e_{21}, d\Phi^f_2 (\Phi^{f}_2)^{-1}- \Phi_1d\Phi_2^f \Psi^{-1}] +[\epsilon a \epsilon, \Psi^{-1}d\Phi_1 \Phi^{f}_2-\Phi_1^{-1}d \Phi_1 ]. \end{align*} $$
$$ \begin{align*} 2(\mathrm{II})(da^f)&=2\iota(\omega_{\mathrm{cor}})\iota(E_1^fE_2^f)(da^f)\\ &=e_1(-\Psi^{-1}d\Phi_1\Phi^f_2+\Phi_1^{-1}d\Phi_1)\epsilon a\epsilon-\epsilon a\epsilon(-\Psi^{-1}d\Phi_1\Phi^f_2+\Phi_1^{-1}d\Phi_1)e_1\\ &-e_1(d\Phi^f_2(\Phi_2^f)^{-1}-\Phi_1d\Phi^f_2\Psi^{-1})e_{12}ae_{21}+e_{12}ae_{21}(d\Phi^f_2(\Phi_2^f)^{-1}-\Phi_1d\Phi^f_2\Psi^{-1})e_{1}\\ & =[e_{12} a e_{21}, d\Phi^f_2 (\Phi^{f}_2)^{-1}- \Phi_1d\Phi_2^f \Psi^{-1}] +[\epsilon a \epsilon, \Psi^{-1}d\Phi_1 \Phi^{f}_2-\Phi_1^{-1}d \Phi_1 ]. \end{align*} $$
Similarly, using 
 $\iota (2\omega ^f)(E_i^f)=(\Phi _i^{-1}d\Phi _i+d\Phi _i\Phi _i^{-1})^f$
, one gets
$\iota (2\omega ^f)(E_i^f)=(\Phi _i^{-1}d\Phi _i+d\Phi _i\Phi _i^{-1})^f$
, one gets 
 $$ \begin{align*} 2(\mathrm{IV})(da^f)&=2\iota(\omega^f)\iota(E_1^fE_2^f)(da^f)\\ &=e_1\iota(2\omega^f)(E_2^f)\epsilon a\epsilon- \epsilon a\epsilon\iota(2\omega^f)(E_2^f)e_1\\ &\qquad-e_1{\iota(2\omega^f)({E_1^f})}e_{12}ae_{21}+e_{12}ae_{21}\iota(2\omega^f)(E_1^f)e_{1}\\ &=e_1(\Phi_2^{-1}d\Phi_2+d\Phi_2\Phi_2^{-1})^f\epsilon a \epsilon-\epsilon a\epsilon(\Phi_2^{-1}d\Phi_2+d\Phi_2\Phi_2^{-1})^fe_1\\ &\qquad-e_1(\Phi_1^{-1}d\Phi_1+d\Phi_1\Phi_1^{-1})^fe_{12}ae_{21}+e_{12}ae_{21}(\Phi_1^{-1}d\Phi_1+d\Phi_1\Phi_1^{-1})^fe_{1}\\ &=e_{12}(\Phi_2^{-1}d\Phi_2+d\Phi_2\Phi_2^{-1})e_{21} \epsilon a \epsilon-\epsilon a \epsilon e_{12}(\Phi_2^{-1}d\Phi_2+d\Phi_2\Phi_2^{-1})e_{21}\\ &\qquad-(\Phi_1^{-1}d\Phi_1+d\Phi_1\Phi_1^{-1})e_{12}ae_{21}+e_{12}ae_{21}(\Phi_1^{-1}d\Phi_1+d\Phi_1\Phi_1^{-1}) \\ &= [e_{12} a e_{21}, \Phi^{-1}_1 d \Phi_1+d\Phi_1 \Phi_1^{-1}] -[\epsilon a \epsilon , (\Phi_2^{f})^{-1} d\Phi_2^f+d\Phi_2^f (\Phi_2^{f})^{-1}]. \end{align*} $$
$$ \begin{align*} 2(\mathrm{IV})(da^f)&=2\iota(\omega^f)\iota(E_1^fE_2^f)(da^f)\\ &=e_1\iota(2\omega^f)(E_2^f)\epsilon a\epsilon- \epsilon a\epsilon\iota(2\omega^f)(E_2^f)e_1\\ &\qquad-e_1{\iota(2\omega^f)({E_1^f})}e_{12}ae_{21}+e_{12}ae_{21}\iota(2\omega^f)(E_1^f)e_{1}\\ &=e_1(\Phi_2^{-1}d\Phi_2+d\Phi_2\Phi_2^{-1})^f\epsilon a \epsilon-\epsilon a\epsilon(\Phi_2^{-1}d\Phi_2+d\Phi_2\Phi_2^{-1})^fe_1\\ &\qquad-e_1(\Phi_1^{-1}d\Phi_1+d\Phi_1\Phi_1^{-1})^fe_{12}ae_{21}+e_{12}ae_{21}(\Phi_1^{-1}d\Phi_1+d\Phi_1\Phi_1^{-1})^fe_{1}\\ &=e_{12}(\Phi_2^{-1}d\Phi_2+d\Phi_2\Phi_2^{-1})e_{21} \epsilon a \epsilon-\epsilon a \epsilon e_{12}(\Phi_2^{-1}d\Phi_2+d\Phi_2\Phi_2^{-1})e_{21}\\ &\qquad-(\Phi_1^{-1}d\Phi_1+d\Phi_1\Phi_1^{-1})e_{12}ae_{21}+e_{12}ae_{21}(\Phi_1^{-1}d\Phi_1+d\Phi_1\Phi_1^{-1}) \\ &= [e_{12} a e_{21}, \Phi^{-1}_1 d \Phi_1+d\Phi_1 \Phi_1^{-1}] -[\epsilon a \epsilon , (\Phi_2^{f})^{-1} d\Phi_2^f+d\Phi_2^f (\Phi_2^{f})^{-1}]. \end{align*} $$
Putting everything together yields (5.1) as expected.
5.2 From Calabi–Yau structures to quasi-bisymplectic structures
 Again, let 
 ${\mathcal C}$
 be a k-linear category with objects set
${\mathcal C}$
 be a k-linear category with objects set 
 $I=\{1,\dots ,n\}$
. Set
$I=\{1,\dots ,n\}$
. Set 
 $e_i=\mathrm {id_i}$
,
$e_i=\mathrm {id_i}$
, 
 $R=\oplus _{i\in I}ke_i$
 and
$R=\oplus _{i\in I}ke_i$
 and 
 ${\mathcal T}:= \coprod _{i\in I} k[x^{\pm 1}_i]$
.
${\mathcal T}:= \coprod _{i\in I} k[x^{\pm 1}_i]$
.
Theorem 5.5. Assume that we have a relative 
 $1$
-Calabi–Yau structure on a k-linear functor
$1$
-Calabi–Yau structure on a k-linear functor 
 $\mu :{\mathcal T}\to \mathcal {C}$
 which induces the natural
$\mu :{\mathcal T}\to \mathcal {C}$
 which induces the natural 
 $1$
-Calabi–Yau structure on each
$1$
-Calabi–Yau structure on each 
 $k[x_i^{\pm 1}]$
. If
$k[x_i^{\pm 1}]$
. If 
 $A=A_{\mathcal {C}}$
 is
$A=A_{\mathcal {C}}$
 is 
 $1$
-smooth, then it is quasi-bisymplectic with multiplicative moment map
$1$
-smooth, then it is quasi-bisymplectic with multiplicative moment map 
 $\sum _{i=1}^n \mu (x_i)$
.
$\sum _{i=1}^n \mu (x_i)$
.
Proof. Define 
 $\Phi :k[x^{\pm 1}]\to A$
 by
$\Phi :k[x^{\pm 1}]\to A$
 by 
 $\Phi (x)=\sum _{i=1}^n \mu (x_i)\in \oplus _{i\in I}e_i A^{\ast } e_i$
. Since
$\Phi (x)=\sum _{i=1}^n \mu (x_i)\in \oplus _{i\in I}e_i A^{\ast } e_i$
. Since 
 $\mu $
 is
$\mu $
 is 
 $1$
-Calabi–Yau, using the notation of section 2.4, we know that there exists
$1$
-Calabi–Yau, using the notation of section 2.4, we know that there exists 
 $\omega _k\in \bar \Omega _R^{2k}A$
 for all k such that
$\omega _k\in \bar \Omega _R^{2k}A$
 for all k such that 
 $$\begin{align*}(\iota_E-ud)\bigg(\sum_{k\ge0}u^k\omega_{k+1}\bigg)=\Phi(\gamma),\end{align*}$$
$$\begin{align*}(\iota_E-ud)\bigg(\sum_{k\ge0}u^k\omega_{k+1}\bigg)=\Phi(\gamma),\end{align*}$$
or equivalently,
 $$ \begin{align*} \iota_E\omega_1&=\Phi(\gamma_1)=\dfrac{1}{2}(\Phi^{-1}d\Phi+d\Phi\Phi^{-1})&&(\mathbb{B}2)\\ \iota_E\omega_2-d\omega_1&=-\dfrac{1}{6}\Phi(\gamma_2)\Rightarrow d\omega_1=\dfrac{1}{6}(\Phi^{-1}d\Phi)^3\mod [-,-]&&(\mathbb B1)\\ \iota_E\omega_3-d\omega_2&=\dfrac{2!}{5!}\Phi(\gamma_3)\\ \vdots\\ \iota_E\omega_{k+1}-d\omega_{k}&=(-1)^k\dfrac{k!}{(2k+1)!}\Phi(\gamma_{k+1})&&k\ge1. \end{align*} $$
$$ \begin{align*} \iota_E\omega_1&=\Phi(\gamma_1)=\dfrac{1}{2}(\Phi^{-1}d\Phi+d\Phi\Phi^{-1})&&(\mathbb{B}2)\\ \iota_E\omega_2-d\omega_1&=-\dfrac{1}{6}\Phi(\gamma_2)\Rightarrow d\omega_1=\dfrac{1}{6}(\Phi^{-1}d\Phi)^3\mod [-,-]&&(\mathbb B1)\\ \iota_E\omega_3-d\omega_2&=\dfrac{2!}{5!}\Phi(\gamma_3)\\ \vdots\\ \iota_E\omega_{k+1}-d\omega_{k}&=(-1)^k\dfrac{k!}{(2k+1)!}\Phi(\gamma_{k+1})&&k\ge1. \end{align*} $$
For 
 $(\mathbb {B}3)$
, set
$(\mathbb {B}3)$
, set 
 $T=k[x^{\pm 1}]$
 and write the relative
$T=k[x^{\pm 1}]$
 and write the relative 
 $1$
-pre-Calabi–Yau structure
$1$
-pre-Calabi–Yau structure 
 $$\begin{align*}A^{\vee}[1]\to T^{\vee}[1]\otimes_{T^e}A^e\overset{\gamma}{\simeq} T\otimes_{T^e}A^e\to A\end{align*}$$
$$\begin{align*}A^{\vee}[1]\to T^{\vee}[1]\otimes_{T^e}A^e\overset{\gamma}{\simeq} T\otimes_{T^e}A^e\to A\end{align*}$$
with short resolutions (thanks to our 
 $1$
-smoothness assumption) to get the homotopy commuting diagram
$1$
-smoothness assumption) to get the homotopy commuting diagram 

where the homotopy 
 $D_{A/R}\to \Omega _{A/R}$
 gives
$D_{A/R}\to \Omega _{A/R}$
 gives 
 $\iota _E\omega _1=(\Phi ^{-1}d\Phi +d\Phi \Phi ^{-1})/2$
.
$\iota _E\omega _1=(\Phi ^{-1}d\Phi +d\Phi \Phi ^{-1})/2$
.
Now assume that our Calabi–Yau structure is non-degenerate; that is,
 $$\begin{align*}A^{\vee}[1]\simeq\mathrm{hofib}\left( T^{\vee}[1]\otimes_{T^e}A^e\overset{\gamma}{\simeq} T\otimes_{T^e}A^e\to A\right).\end{align*}$$
$$\begin{align*}A^{\vee}[1]\simeq\mathrm{hofib}\left( T^{\vee}[1]\otimes_{T^e}A^e\overset{\gamma}{\simeq} T\otimes_{T^e}A^e\to A\right).\end{align*}$$
In short resolutions, this yields a quasi-isomorphism (between vertical complexes)

which, in particular, gives a surjection 
 $D_{A/R} \to \Omega _{A/R}/\langle d\Phi \rangle $
, that is
$D_{A/R} \to \Omega _{A/R}/\langle d\Phi \rangle $
, that is 
 $(\mathbb B_3)$
.
$(\mathbb B_3)$
.
5.3 Fusion
 Set 
 ${\mathcal T}_{\ge 3}=\amalg _{i\ge 3}k[x_i^{\pm 1}]$
 and consider the following composition of
${\mathcal T}_{\ge 3}=\amalg _{i\ge 3}k[x_i^{\pm 1}]$
 and consider the following composition of 
 $1$
-Calabi–Yau cospans:
$1$
-Calabi–Yau cospans: 

where the leftmost one is induced by the pair-of-pants. We want to prove the following multiplicative analog of theorem 4.10.
Theorem 5.6. Consider a 
 $1$
-Calabi–Yau functor
$1$
-Calabi–Yau functor 
 ${\mathcal T}\rightarrow {\mathcal C}$
 inducing the natural
${\mathcal T}\rightarrow {\mathcal C}$
 inducing the natural 
 $1$
-Calabi–Yau structure on each
$1$
-Calabi–Yau structure on each 
 $k[x_i^{\pm 1}]$
, and assume that
$k[x_i^{\pm 1}]$
, and assume that 
 $A_{{\mathcal C}}$
 is
$A_{{\mathcal C}}$
 is 
 $1$
-smooth. Then the quasi-bisymplectic structure on
$1$
-smooth. Then the quasi-bisymplectic structure on 
 $\mathcal {C}^f$
 induced, thanks to theorem 5.5, by the
$\mathcal {C}^f$
 induced, thanks to theorem 5.5, by the 
 $1$
-Calabi–Yau functor
$1$
-Calabi–Yau functor 
 $$\begin{align*}k[z^{\pm1}]\amalg{\mathcal T}_{\ge3}\rightarrow\mathcal{C}^f\end{align*}$$
$$\begin{align*}k[z^{\pm1}]\amalg{\mathcal T}_{\ge3}\rightarrow\mathcal{C}^f\end{align*}$$
is the one obtained by fusion of 
 $1$
 and
$1$
 and 
 $2$
 from the quasi-bisymplectic structure of
$2$
 from the quasi-bisymplectic structure of 
 $A_{\mathcal {C}}$
 induced by theorem 5.5.
$A_{\mathcal {C}}$
 induced by theorem 5.5.
Proof. Denote by 
 $\Phi _1^f,\Phi _2^f$
 the images of
$\Phi _1^f,\Phi _2^f$
 the images of 
 $x=x_1,y=x_2$
 in the pushout
$x=x_1,y=x_2$
 in the pushout 
 $\mathcal {C}^f$
. The extra difficulty here with respect to the proof of theorem 4.10 is that the homotopy
$\mathcal {C}^f$
. The extra difficulty here with respect to the proof of theorem 4.10 is that the homotopy 
 $\beta _1$
 involved in the pair-of-pants cospan is nontrivial; see example 4.4. This non-degenerate homotopy
$\beta _1$
 involved in the pair-of-pants cospan is nontrivial; see example 4.4. This non-degenerate homotopy 
 $$\begin{align*}\beta_1=\dfrac{1}{2}\Big(y^{-1}\otimes x^{-1}\otimes xy-y\otimes y^{-1}x^{-1}\otimes x\Big)\in\overline{\mathrm{HH}}_2k\langle x^{\pm1} ,y^{\pm1}\rangle\end{align*}$$
$$\begin{align*}\beta_1=\dfrac{1}{2}\Big(y^{-1}\otimes x^{-1}\otimes xy-y\otimes y^{-1}x^{-1}\otimes x\Big)\in\overline{\mathrm{HH}}_2k\langle x^{\pm1} ,y^{\pm1}\rangle\end{align*}$$
is mapped in 
 $\overline {\mathrm {DR}}^2 k\langle x^{\pm 1} ,y^{\pm 1}\rangle $
 to
$\overline {\mathrm {DR}}^2 k\langle x^{\pm 1} ,y^{\pm 1}\rangle $
 to 
 $$ \begin{align*} \omega&=\dfrac{1}{4}\Big(y^{-1}d x^{-1}d (xy)-yd( y^{-1}x^{-1})d x\Big)\\ &=\dfrac{1}{4}\Big(-y^{-1}x^{-1}d xx^{-1}(xd y+dxy)+d yy^{-1}x^{-1}d x+x^{-1}dxx^{-1}dx\Big)\\ &=\dfrac{1}{4}\Big(-y^{-1}x^{-1}d xd y-y^{-1}x^{-1}d xx^{-1}dxy+d yy^{-1}x^{-1}d x+x^{-1}dxx^{-1}dx\Big)\\ &\equiv-\dfrac{1}{2}x^{-1}dxdyy^{-1}\quad\mod[-,-], \end{align*} $$
$$ \begin{align*} \omega&=\dfrac{1}{4}\Big(y^{-1}d x^{-1}d (xy)-yd( y^{-1}x^{-1})d x\Big)\\ &=\dfrac{1}{4}\Big(-y^{-1}x^{-1}d xx^{-1}(xd y+dxy)+d yy^{-1}x^{-1}d x+x^{-1}dxx^{-1}dx\Big)\\ &=\dfrac{1}{4}\Big(-y^{-1}x^{-1}d xd y-y^{-1}x^{-1}d xx^{-1}dxy+d yy^{-1}x^{-1}d x+x^{-1}dxx^{-1}dx\Big)\\ &\equiv-\dfrac{1}{2}x^{-1}dxdyy^{-1}\quad\mod[-,-], \end{align*} $$
which is mapped to
 $$\begin{align*}-\dfrac{1}{2}(\Phi_1^f)^{-1}d\Phi_1^fd\Phi^f_2(\Phi_2^f)^{-1}\in \overline{\mathrm{DR}}^2_{R^f} \mathcal{C}^f.\end{align*}$$
$$\begin{align*}-\dfrac{1}{2}(\Phi_1^f)^{-1}d\Phi_1^fd\Phi^f_2(\Phi_2^f)^{-1}\in \overline{\mathrm{DR}}^2_{R^f} \mathcal{C}^f.\end{align*}$$
The proposition 5.4 allows us to conclude, thanks to the uniqueness [Reference Van den Bergh31, Theorem 7.1] of compatibility and [Reference Van den Bergh31, Theorem 8.2.1].
 To summarize, we have proven that the following diagram commutes, where 
 $R^f=\oplus _{i\in I\setminus \{2\}}ke_i$
 and
$R^f=\oplus _{i\in I\setminus \{2\}}ke_i$
 and 
 ${{\mathcal T}}^f=\amalg _{i\in I\setminus \{2\}}k[x_i^{\pm 1}]$
.
${{\mathcal T}}^f=\amalg _{i\in I\setminus \{2\}}k[x_i^{\pm 1}]$
. 

5.4 Examples
5.4.1 An elementary quiver
 Consider the quiver 
 $A_2=(V=\{1,2\},E=\{e:1\to 2\})$
, with orthogonal idempotents
$A_2=(V=\{1,2\},E=\{e:1\to 2\})$
, with orthogonal idempotents 
 $e_1$
 and
$e_1$
 and 
 $e_2$
 satisfying
$e_2$
 satisfying 
 $1=e_1+e_2$
,
$1=e_1+e_2$
, 
 $R=ke_1\oplus ke_2$
, and set
$R=ke_1\oplus ke_2$
, and set 
 $$\begin{align*}a_1=e_1+e^*e\text{ and }a_2=e_2+ee^*.\end{align*}$$
$$\begin{align*}a_1=e_1+e^*e\text{ and }a_2=e_2+ee^*.\end{align*}$$
Let us denote by A the localization 
 $(k\overline {A_2})_{a_{1},a_2}$
. Recall that we have given in [Reference Bozec, Calaque and Scherotzke4] a relative
$(k\overline {A_2})_{a_{1},a_2}$
. Recall that we have given in [Reference Bozec, Calaque and Scherotzke4] a relative 
 $1$
-Calabi–Yau structure on
$1$
-Calabi–Yau structure on 
 $ \Phi : k[x^{\pm 1}] \to A$
 defined by
$ \Phi : k[x^{\pm 1}] \to A$
 defined by 
 $$\begin{align*}\Phi_1(x_1)=a_1^{-1}\quad \text{and}\quad \Phi_2(x_2)=a_2. \end{align*}$$
$$\begin{align*}\Phi_1(x_1)=a_1^{-1}\quad \text{and}\quad \Phi_2(x_2)=a_2. \end{align*}$$
Define 
 $\partial /\partial e$
 and
$\partial /\partial e$
 and 
 $\partial /\partial e^*$
 in
$\partial /\partial e^*$
 in 
 $D_RA$
 by
$D_RA$
 by 
 $\partial e/\partial e=e_2\otimes e_1$
,
$\partial e/\partial e=e_2\otimes e_1$
, 
 $\partial e^*/\partial e=0$
,
$\partial e^*/\partial e=0$
, 
 $\partial e^*/\partial e^*=e_1\otimes e_2$
 and
$\partial e^*/\partial e^*=e_1\otimes e_2$
 and 
 $\partial e/\partial e^*=0$
.
$\partial e/\partial e^*=0$
.
 In the previous section, we proved that this Calabi–Yau structure induces a quasi-bisymplectic one 
 $\omega _1\in \overline {\mathrm {DR}}_R^2A$
 on A. We want to prove the following.
$\omega _1\in \overline {\mathrm {DR}}_R^2A$
 on A. We want to prove the following.
Proposition 5.7. The double quasi-Poisson bracket compatible with 
 $\omega _1$
 through [Reference Van den Bergh31, Theorem 7.1] is the one described in [Reference Van den Bergh31, §8.3]:
$\omega _1$
 through [Reference Van den Bergh31, Theorem 7.1] is the one described in [Reference Van den Bergh31, §8.3]: 
 $$\begin{align*}P=\dfrac{1}{2} \left(\left(1+ee^* \right) \dfrac{\partial}{\partial e^*} \frac{ \partial}{\partial e} -\left(1+e^*e\right) \dfrac{\partial}{\partial e}\frac{ \partial}{\partial e^*}\right) \in \left( D_RA/[D_RA, D_RA] \right)_2.\end{align*}$$
$$\begin{align*}P=\dfrac{1}{2} \left(\left(1+ee^* \right) \dfrac{\partial}{\partial e^*} \frac{ \partial}{\partial e} -\left(1+e^*e\right) \dfrac{\partial}{\partial e}\frac{ \partial}{\partial e^*}\right) \in \left( D_RA/[D_RA, D_RA] \right)_2.\end{align*}$$
 Note that we use the convention regarding concatenation of paths opposite to the one in [Reference Van den Bergh30]; that is, 
 $e=e_2ee_1$
.
$e=e_2ee_1$
.
Proof. In [Reference Bozec, Calaque and Scherotzke3], one homotopy 
 $\phi (\gamma _1) \sim 0$
 is given by
$\phi (\gamma _1) \sim 0$
 is given by 
 $$ \begin{align}\begin{split} \beta_1&=\dfrac{1}{2}\big(e^*\otimes e\otimes \Phi+\Phi\otimes e^*\otimes e- e^*\otimes \Phi^{-1}\otimes e-\Phi^{-1}\otimes e\otimes e^*\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad+1\otimes e^*\otimes e \Phi-1\otimes e\Phi\otimes e^*\big),\end{split}\end{align} $$
$$ \begin{align}\begin{split} \beta_1&=\dfrac{1}{2}\big(e^*\otimes e\otimes \Phi+\Phi\otimes e^*\otimes e- e^*\otimes \Phi^{-1}\otimes e-\Phi^{-1}\otimes e\otimes e^*\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad+1\otimes e^*\otimes e \Phi-1\otimes e\Phi\otimes e^*\big),\end{split}\end{align} $$
where 
 $\Phi =\Phi _1(x_1)+\Phi _2(x_2)$
. It yields an element (
$\Phi =\Phi _1(x_1)+\Phi _2(x_2)$
. It yields an element (
 $1/4$
 appears because of the degree operator)
$1/4$
 appears because of the degree operator) 
 $$\begin{align*}\omega_1=\dfrac{1}{4}\big(e^*ded\Phi+\Phi de^*de-e^*d\Phi^{-1}de-\Phi^{-1}dede^*+de^*d(e\Phi)-d(e\Phi)de^*\big)\end{align*}$$
$$\begin{align*}\omega_1=\dfrac{1}{4}\big(e^*ded\Phi+\Phi de^*de-e^*d\Phi^{-1}de-\Phi^{-1}dede^*+de^*d(e\Phi)-d(e\Phi)de^*\big)\end{align*}$$
in 
 $\overline {\mathrm {DR}}^2A= \left ( \overline \Omega A/[\overline \Omega A,\overline \Omega A] \right )_2$
. We can heavily simplify this expression working modulo
$\overline {\mathrm {DR}}^2A= \left ( \overline \Omega A/[\overline \Omega A,\overline \Omega A] \right )_2$
. We can heavily simplify this expression working modulo 
 $[\overline \Omega A,\overline \Omega A]$
. First, note that (again,
$[\overline \Omega A,\overline \Omega A]$
. First, note that (again, 
 $dab$
 stands for
$dab$
 stands for 
 $(da)b$
)
$(da)b$
) 
 $$ \begin{align*} d\Phi&=-a_1^{-1}(de^*e+e^*de)a_1^{-1}+dee^*+ede^*=-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*\\ d\Phi^{-1}&=de^*e+e^*de-a_2^{-1}(dee^*+ede^*)a_2^{-1}=de^*e+e^*de-\Phi^{-1}(dee^*+ede^*)\Phi^{-1}. \end{align*} $$
$$ \begin{align*} d\Phi&=-a_1^{-1}(de^*e+e^*de)a_1^{-1}+dee^*+ede^*=-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*\\ d\Phi^{-1}&=de^*e+e^*de-a_2^{-1}(dee^*+ede^*)a_2^{-1}=de^*e+e^*de-\Phi^{-1}(dee^*+ede^*)\Phi^{-1}. \end{align*} $$
Thus, using 
 $\Phi e\Phi =e$
 and
$\Phi e\Phi =e$
 and 
 $\Phi e^*\Phi =e^*$
 (cf [Reference Bozec, Calaque and Scherotzke4, (4.3)]),
$\Phi e^*\Phi =e^*$
 (cf [Reference Bozec, Calaque and Scherotzke4, (4.3)]), 
 $$ \begin{align*} 4\omega_1&=\Phi de^*de-\Phi^{-1}dede^*+e^*ded\Phi-e^*d\Phi^{-1}de+2de^*d(e\Phi)\\ &=\Phi de^*de-\Phi^{-1}dede^*-e^*de\Phi(de^*e+e^*de)\Phi\\ &\qquad+e^*\Phi^{-1}(dee^*+ede^*)\Phi^{-1}de+2de^*de\Phi-2de^*e\Phi(de^*e+e^*de)\Phi\\ &=\Phi de^*de-\Phi^{-1}dede^*-e^*de\Phi de^*e\Phi\\ &\qquad\underbrace{-e^*de\Phi e^*de\Phi+e^*\Phi^{-1} dee^*\Phi^{-1}de}_{\equiv0}+e^*\Phi^{-1}ede^*\Phi^{-1}de\\ &\qquad\qquad+2de^*de\Phi-2\underbrace{de^*e\Phi de^*e\Phi}_{\equiv0}-2de^*e\Phi e^*de\Phi\\ &\equiv3\Phi de^*de-\Phi^{-1}dede^*-e\Phi e^*de\Phi de^*+e^*\Phi^{-1}ede^*\Phi^{-1}de+2de^*e\Phi e^*de\Phi\\ &=3\Phi de^*de-\Phi^{-1}dede^*-ee^*\Phi_2^{-1}de\Phi de^*+e^*e\Phi_1 de^*\Phi^{-1}de+2de^*ee^*\Phi_2^{-1} de\Phi\\ &=3\Phi de^*de-\Phi^{-1}dede^*-de\Phi de^*+\Phi^{-1}de\Phi de^*\\ &\qquad+ de^*\Phi^{-1}de-\Phi de^*\Phi^{-1}de-2de^*de\Phi+2de^*\Phi^{-1}de\Phi\\ &\equiv2\Phi de^*de-2\Phi^{-1}dede^*. \end{align*} $$
$$ \begin{align*} 4\omega_1&=\Phi de^*de-\Phi^{-1}dede^*+e^*ded\Phi-e^*d\Phi^{-1}de+2de^*d(e\Phi)\\ &=\Phi de^*de-\Phi^{-1}dede^*-e^*de\Phi(de^*e+e^*de)\Phi\\ &\qquad+e^*\Phi^{-1}(dee^*+ede^*)\Phi^{-1}de+2de^*de\Phi-2de^*e\Phi(de^*e+e^*de)\Phi\\ &=\Phi de^*de-\Phi^{-1}dede^*-e^*de\Phi de^*e\Phi\\ &\qquad\underbrace{-e^*de\Phi e^*de\Phi+e^*\Phi^{-1} dee^*\Phi^{-1}de}_{\equiv0}+e^*\Phi^{-1}ede^*\Phi^{-1}de\\ &\qquad\qquad+2de^*de\Phi-2\underbrace{de^*e\Phi de^*e\Phi}_{\equiv0}-2de^*e\Phi e^*de\Phi\\ &\equiv3\Phi de^*de-\Phi^{-1}dede^*-e\Phi e^*de\Phi de^*+e^*\Phi^{-1}ede^*\Phi^{-1}de+2de^*e\Phi e^*de\Phi\\ &=3\Phi de^*de-\Phi^{-1}dede^*-ee^*\Phi_2^{-1}de\Phi de^*+e^*e\Phi_1 de^*\Phi^{-1}de+2de^*ee^*\Phi_2^{-1} de\Phi\\ &=3\Phi de^*de-\Phi^{-1}dede^*-de\Phi de^*+\Phi^{-1}de\Phi de^*\\ &\qquad+ de^*\Phi^{-1}de-\Phi de^*\Phi^{-1}de-2de^*de\Phi+2de^*\Phi^{-1}de\Phi\\ &\equiv2\Phi de^*de-2\Phi^{-1}dede^*. \end{align*} $$
We now need to prove that P and 
 $\omega _1$
 are compatible, meaning that
$\omega _1$
 are compatible, meaning that 
 $$ \begin{align} \iota(\omega_1)\iota(P)=1-\dfrac{1}{4}T\end{align} $$
$$ \begin{align} \iota(\omega_1)\iota(P)=1-\dfrac{1}{4}T\end{align} $$
with 
 $T(dp)=[p,\Phi ^{-1}d\Phi -d\Phi \Phi ^{-1}]$
. For
$T(dp)=[p,\Phi ^{-1}d\Phi -d\Phi \Phi ^{-1}]$
. For 
 $p=e$
, the LHS is
$p=e$
, the LHS is 
 $$ \begin{align*} \iota(\omega_1)\iota(P)(de)&=\dfrac{1}{2}\iota(\omega_1)\left(\dfrac{\partial}{\partial e^*}(1+e^*e)+(1+ee^*)\dfrac{\partial}{\partial e^*}\right)\\ &=\dfrac{1}{2}({}^{\circ} i_{{\partial}/{\partial e^*}}(\omega_1)(1+e^*e)+(1+ee^*){}^{\circ} i_{{\partial}/{\partial e^*}}(\omega_1)), \end{align*} $$
$$ \begin{align*} \iota(\omega_1)\iota(P)(de)&=\dfrac{1}{2}\iota(\omega_1)\left(\dfrac{\partial}{\partial e^*}(1+e^*e)+(1+ee^*)\dfrac{\partial}{\partial e^*}\right)\\ &=\dfrac{1}{2}({}^{\circ} i_{{\partial}/{\partial e^*}}(\omega_1)(1+e^*e)+(1+ee^*){}^{\circ} i_{{\partial}/{\partial e^*}}(\omega_1)), \end{align*} $$
where
 $$\begin{align*}i_{\delta}(pdqdr)=p\delta(q)'\otimes\delta(q)"dr-pdq\delta(r)'\otimes\delta(r)"\in A\otimes\Omega^1+\Omega^1\otimes A,\end{align*}$$
$$\begin{align*}i_{\delta}(pdqdr)=p\delta(q)'\otimes\delta(q)"dr-pdq\delta(r)'\otimes\delta(r)"\in A\otimes\Omega^1+\Omega^1\otimes A,\end{align*}$$
as stated earlier. Note that above we have used, for 
 $\pi ,\nu \in A$
 and
$\pi ,\nu \in A$
 and 
 $\delta \in D_{A/R}$
,
$\delta \in D_{A/R}$
, 
 $$ \begin{align*} {}^{\circ} i_{\pi\delta\nu}(pdqdr)&={}^{\circ}(p\delta(q)'\nu\otimes\pi\delta(q)"dr-pdq\delta(r)'\nu\otimes\pi\delta(r)")\\ &=\pi{}^{\circ} i_{\delta}(pdqdr)\nu \end{align*} $$
$$ \begin{align*} {}^{\circ} i_{\pi\delta\nu}(pdqdr)&={}^{\circ}(p\delta(q)'\nu\otimes\pi\delta(q)"dr-pdq\delta(r)'\nu\otimes\pi\delta(r)")\\ &=\pi{}^{\circ} i_{\delta}(pdqdr)\nu \end{align*} $$
since the bimodule structure on 
 $D_{A/R}$
 is induced by the inner one on
$D_{A/R}$
 is induced by the inner one on 
 $A^e$
, as explained in the proof of [Reference Crawley-Boevey, Etingof and Ginzburg9, 2.8.6]. We have
$A^e$
, as explained in the proof of [Reference Crawley-Boevey, Etingof and Ginzburg9, 2.8.6]. We have 
 $$ \begin{align*} {}^{\circ} i_{{\partial}/{\partial e^*}}(2\omega_1)={}^{\circ}(\Phi\otimes de+\Phi^{-1}de\otimes e_2)=de\Phi+\Phi^{-1}de.\end{align*} $$
$$ \begin{align*} {}^{\circ} i_{{\partial}/{\partial e^*}}(2\omega_1)={}^{\circ}(\Phi\otimes de+\Phi^{-1}de\otimes e_2)=de\Phi+\Phi^{-1}de.\end{align*} $$
Thus,
 $$ \begin{align*} 4\iota(\omega_1)\iota(P)(da)&=(de\Phi+\Phi^{-1}de)(1+e^*e)+(1+ee^*)(de\Phi+\Phi^{-1}de)\\ &=2de+\Phi^{-1}de\Phi^{-1}+\Phi de\Phi, \end{align*} $$
$$ \begin{align*} 4\iota(\omega_1)\iota(P)(da)&=(de\Phi+\Phi^{-1}de)(1+e^*e)+(1+ee^*)(de\Phi+\Phi^{-1}de)\\ &=2de+\Phi^{-1}de\Phi^{-1}+\Phi de\Phi, \end{align*} $$
whereas 
 $4$
 times the RHS of (5.4) evaluated at
$4$
 times the RHS of (5.4) evaluated at 
 $de$
 is
$de$
 is 
 $$ \begin{align*} 4de-[e,\Phi^{-1}d\Phi-d\Phi\Phi^{-1}]&=4de-e\Phi^{-1}(-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*)\\ &\qquad+e(-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*)\Phi^{-1}\\ &\qquad\qquad+\Phi^{-1}(-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*)e\\ &\qquad\qquad\qquad-(-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*)\Phi^{-1}e\\ &=4de+ede^*e\Phi+ee^*de\Phi-e\Phi de^*e-e\Phi e^*de\\ &\qquad+\Phi^{-1}dee^*e+\Phi^{-1}ede^*e-dee^*\Phi^{-1}e-ede^*\Phi^{-1}e\\ &=4de+ee^*de\Phi-\Phi^{-1}e e^*de+\Phi^{-1}dee^*e-dee^*e\Phi\\ &=4de+\Phi de\Phi-de\Phi-de+\Phi^{-1}de\\ &\qquad+\Phi^{-1}de\Phi^{-1}-\Phi^{-1}de-de+de\Phi\\ &=2de+\Phi^{-1}de\Phi^{-1}+\Phi de\Phi, \end{align*} $$
$$ \begin{align*} 4de-[e,\Phi^{-1}d\Phi-d\Phi\Phi^{-1}]&=4de-e\Phi^{-1}(-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*)\\ &\qquad+e(-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*)\Phi^{-1}\\ &\qquad\qquad+\Phi^{-1}(-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*)e\\ &\qquad\qquad\qquad-(-\Phi(de^*e+e^*de)\Phi+dee^*+ede^*)\Phi^{-1}e\\ &=4de+ede^*e\Phi+ee^*de\Phi-e\Phi de^*e-e\Phi e^*de\\ &\qquad+\Phi^{-1}dee^*e+\Phi^{-1}ede^*e-dee^*\Phi^{-1}e-ede^*\Phi^{-1}e\\ &=4de+ee^*de\Phi-\Phi^{-1}e e^*de+\Phi^{-1}dee^*e-dee^*e\Phi\\ &=4de+\Phi de\Phi-de\Phi-de+\Phi^{-1}de\\ &\qquad+\Phi^{-1}de\Phi^{-1}-\Phi^{-1}de-de+de\Phi\\ &=2de+\Phi^{-1}de\Phi^{-1}+\Phi de\Phi, \end{align*} $$
as wished. Computations are similar to prove eq. (5.4) evaluated at 
 $de^*$
.
$de^*$
.
5.4.2 Arbitrary quivers
 Let us go back to the proof [Reference Bozec, Calaque and Scherotzke4, Theorem 4.8] of the 
 $1$
-Calabi–Yau structure on the multiplicative moment map
$1$
-Calabi–Yau structure on the multiplicative moment map 
 $\mu _Q:\coprod _{v\in V}k[z_v^{\pm 1}] \rightarrow k\overline {Q}_{loc} :=k\overline {Q}[(1+ee^*)^{-1}]_{e\in \overline E}$
 defined by
$\mu _Q:\coprod _{v\in V}k[z_v^{\pm 1}] \rightarrow k\overline {Q}_{loc} :=k\overline {Q}[(1+ee^*)^{-1}]_{e\in \overline E}$
 defined by 
 $$\begin{align*}z_v \longmapsto \prod_{e\in E\cap t^{-1}(v)}(1+ee^*)\times \prod_{e\in E\cap s^{-1}(v)}(1+e^*e)^{-1}.\end{align*}$$
$$\begin{align*}z_v \longmapsto \prod_{e\in E\cap t^{-1}(v)}(1+ee^*)\times \prod_{e\in E\cap s^{-1}(v)}(1+e^*e)^{-1}.\end{align*}$$
It is done by realizing this functor as successive compositions of Calabi–Yau cospans. Let us specify an order that better suits our purpose. As usual, we denote by 
 $Q^{\mathrm {sep}}$
 the quiver with same edge set E but vertex set
$Q^{\mathrm {sep}}$
 the quiver with same edge set E but vertex set 
 $\overline E=\{v_e=s(e),v_{e^*}=t(e)\}$
. It is the disjoint union of
$\overline E=\{v_e=s(e),v_{e^*}=t(e)\}$
. It is the disjoint union of 
 $|E|$
 copies of
$|E|$
 copies of 
 $A_2$
. We have a 1-Calabi–Yau morphism
$A_2$
. We have a 1-Calabi–Yau morphism 
 $$ \begin{align} \mu_{Q^{\mathrm{sep}}}:\coprod_{e\in E}(k[x_e^{\pm1}]\amalg k[y_e^{\pm1}])\longrightarrow k\overline {Q^{\mathrm{sep}}}_{loc} \end{align} $$
$$ \begin{align} \mu_{Q^{\mathrm{sep}}}:\coprod_{e\in E}(k[x_e^{\pm1}]\amalg k[y_e^{\pm1}])\longrightarrow k\overline {Q^{\mathrm{sep}}}_{loc} \end{align} $$
given by 
 $x_e\mapsto (e_{s(e)}+e^*e)^{-1}$
 and
$x_e\mapsto (e_{s(e)}+e^*e)^{-1}$
 and 
 $y_e\mapsto e_{t(e)}+ee^*$
. We know, thanks to the previous section, that the quasi-bisymplectic structure on
$y_e\mapsto e_{t(e)}+ee^*$
. We know, thanks to the previous section, that the quasi-bisymplectic structure on 
 $k\overline {Q^{\mathrm {sep}}}_{loc}$
 induced by this
$k\overline {Q^{\mathrm {sep}}}_{loc}$
 induced by this 
 $1$
-Calabi–Yau multiplicative moment map matches the one described by Van den Bergh in [Reference Van den Bergh31].
$1$
-Calabi–Yau multiplicative moment map matches the one described by Van den Bergh in [Reference Van den Bergh31].
 We want to prove the same for Q by fusing pairs of vertices 
 $(v_e,v_f)$
 any time
$(v_e,v_f)$
 any time 
 $s(e)=s(f)$
 in
$s(e)=s(f)$
 in 
 $\overline Q$
. Precisely, pick a finite sequence of fusion of pairs of vertices that takes us from
$\overline Q$
. Precisely, pick a finite sequence of fusion of pairs of vertices that takes us from 
 $Q^{\mathrm {sep}}$
 to Q, and consider an intermediary step
$Q^{\mathrm {sep}}$
 to Q, and consider an intermediary step 
 $Q^{\diamond }$
. Assume that the quasi-bisymplectic structure induced by the
$Q^{\diamond }$
. Assume that the quasi-bisymplectic structure induced by the 
 $1$
-Calabi–Yau one on
$1$
-Calabi–Yau one on 
 $\mu _{Q^{\diamond }}$
 matches Van den Bergh’s, and proceed to the next fusion in our sequence. Assume that we fuse
$\mu _{Q^{\diamond }}$
 matches Van den Bergh’s, and proceed to the next fusion in our sequence. Assume that we fuse 
 $1$
 and
$1$
 and 
 $2$
 in the vertex set I of
$2$
 in the vertex set I of 
 $Q^{\diamond }$
. By that, we mean that we precisely proceed to the composition (5.2), where
$Q^{\diamond }$
. By that, we mean that we precisely proceed to the composition (5.2), where 
 $\mathcal {C}=k\overline {Q^{\diamond }}_{loc}$
. By induction, and using theorem 5.6, we get the following.
$\mathcal {C}=k\overline {Q^{\diamond }}_{loc}$
. By induction, and using theorem 5.6, we get the following.
Theorem 5.8. The quasi-bisymplectic structure on 
 $k\overline {Q}_{loc}$
 induced by the
$k\overline {Q}_{loc}$
 induced by the 
 $1$
-Calabi–Yau one on
$1$
-Calabi–Yau one on 
 $\mu _Q$
 matches the one given by Van den Bergh.
$\mu _Q$
 matches the one given by Van den Bergh.
6 Representation spaces
 As before, assume that A is a 
 $1$
-smooth R-algebra with
$1$
-smooth R-algebra with 
 $R=\oplus _{i\in I}ke_i$
, where the
$R=\oplus _{i\in I}ke_i$
, where the 
 $e_i$
 are pairwise orthogonal idempotents and
$e_i$
 are pairwise orthogonal idempotents and 
 $I:=\{1, \cdots , n\}$
. For any I-graded finite dimensional space V, define
$I:=\{1, \cdots , n\}$
. For any I-graded finite dimensional space V, define 
 $A_V$
 by
$A_V$
 by 
 $$\begin{align*}\mathrm{Hom}_{\mathrm{Alg}/R}(A,\mathrm{End}(V))=\mathrm{Hom}_{\mathrm{CommAlg}/k}(A_V,k). \end{align*}$$
$$\begin{align*}\mathrm{Hom}_{\mathrm{Alg}/R}(A,\mathrm{End}(V))=\mathrm{Hom}_{\mathrm{CommAlg}/k}(A_V,k). \end{align*}$$
Thanks to [Reference Crawley-Boevey, Etingof and Ginzburg9, (6.2.2)], setting 
 $X_V=\mathrm {Spec}(A_V)$
, we have a map
$X_V=\mathrm {Spec}(A_V)$
, we have a map 
 $$ \begin{align} \underline{\mathrm{tr}}:\mathrm{DR}^* A\longrightarrow \Omega^*( X_V)^{\mathrm{GL}_V} \end{align} $$
$$ \begin{align} \underline{\mathrm{tr}}:\mathrm{DR}^* A\longrightarrow \Omega^*( X_V)^{\mathrm{GL}_V} \end{align} $$
given by 
 $\alpha \mapsto \mathrm {tr}(\hat \alpha )$
, where
$\alpha \mapsto \mathrm {tr}(\hat \alpha )$
, where 
 $\hat \alpha $
 is induced by the evaluation
$\hat \alpha $
 is induced by the evaluation 
 $$\begin{align*}A\rightarrow(A_V\otimes \mathrm{End}(V))^{\mathrm{GL}_V}\quad;\quad a\mapsto\hat a. \end{align*}$$
$$\begin{align*}A\rightarrow(A_V\otimes \mathrm{End}(V))^{\mathrm{GL}_V}\quad;\quad a\mapsto\hat a. \end{align*}$$
 Thanks to [Reference Van den Bergh31, Proposition 6.1], there is a quasi-Hamiltonian structure on 
 $(X_V,\underline {\mathrm {tr}}(\omega ),\hat \Phi )$
 when
$(X_V,\underline {\mathrm {tr}}(\omega ),\hat \Phi )$
 when 
 $(A,\omega ,\Phi )$
 is quasi-bisymplectic. Now,
$(A,\omega ,\Phi )$
 is quasi-bisymplectic. Now, 
 $\hat \Phi :X_V\to \mathrm {GL}_V$
 induces a lagrangian structure on
$\hat \Phi :X_V\to \mathrm {GL}_V$
 induces a lagrangian structure on 
 $[X_V/\mathrm {GL}_V]\to [\mathrm {GL}_V/\mathrm {GL}_V]$
.
$[X_V/\mathrm {GL}_V]\to [\mathrm {GL}_V/\mathrm {GL}_V]$
.
 However, thanks to [Reference Brav and Dyckerhoff6], if 
 $\Phi $
 carries a
$\Phi $
 carries a 
 $1$
-Calabi–Yau structure, it yields a lagrangian structure on
$1$
-Calabi–Yau structure, it yields a lagrangian structure on 
 $\mathrm {Perf}_A\to \mathrm {Perf}_{k[x^{\pm 1}]}$
, and thus considers substacks on
$\mathrm {Perf}_A\to \mathrm {Perf}_{k[x^{\pm 1}]}$
, and thus considers substacks on 
 $[X_V/\mathrm {GL}_V]\to [\mathrm {GL}_V/\mathrm {GL}_V]$
 again.
$[X_V/\mathrm {GL}_V]\to [\mathrm {GL}_V/\mathrm {GL}_V]$
 again.
 In both cases, we know that the induced 
 $1$
-shifted symplectic structure on
$1$
-shifted symplectic structure on 
 $[\mathrm {GL}_V/\mathrm {GL}_V]$
 is the standard one, thanks to [Reference Bozec, Calaque and Scherotzke4, §5.1] for the latter.
$[\mathrm {GL}_V/\mathrm {GL}_V]$
 is the standard one, thanks to [Reference Bozec, Calaque and Scherotzke4, §5.1] for the latter.
 Now, assume that the 
 $1$
-Calabi–Yau structure on
$1$
-Calabi–Yau structure on 
 $\Phi $
 induces the quasi-bisymplectic structure
$\Phi $
 induces the quasi-bisymplectic structure 
 $(A,\omega ,\Phi )$
; that is,
$(A,\omega ,\Phi )$
; that is, 
 $\omega _1$
 in the proof of theorem 5.5 is
$\omega _1$
 in the proof of theorem 5.5 is 
 $\omega $
. The current section is devoted to the proof of the following.
$\omega $
. The current section is devoted to the proof of the following.
Theorem 6.1. These two lagrangian structures are identical.
6.1 Lagrangian morphisms and quasi-hamiltonian spaces
 Let X be a smooth algebraic variety. Since we will apply the following results to 
 $X=X_V$
, we assume X to be affine for simplicity, but these results can be extended to the non-affine case. Assume that a reductive group G acts on X and consider a G-equivariant morphism
$X=X_V$
, we assume X to be affine for simplicity, but these results can be extended to the non-affine case. Assume that a reductive group G acts on X and consider a G-equivariant morphism 
 $\mu :X\to {G}$
, which induces
$\mu :X\to {G}$
, which induces 
 $[\mu ]:[X/G]\to [G/G]$
. Consider the standard 1-shifted symplectic structure on
$[\mu ]:[X/G]\to [G/G]$
. Consider the standard 1-shifted symplectic structure on 
 $[G/G]$
 given by
$[G/G]$
 given by 
 $\underline \omega =\underline \omega _0+\underline \omega _1$
, where
$\underline \omega =\underline \omega _0+\underline \omega _1$
, where 
 $\underline \omega _0\in (\Omega ^1(G)\otimes \mathfrak g^*)^G$
 and
$\underline \omega _0\in (\Omega ^1(G)\otimes \mathfrak g^*)^G$
 and 
 $\underline \omega _1\in \Omega ^3(G)^G$
.
$\underline \omega _1\in \Omega ^3(G)^G$
.
 We refer to [Reference Bozec, Calaque and Scherotzke3, §3] for a precise definition of the space 
 $\mathcal A^{p,(\mathrm {cl})}(X,n)$
 of (closed) p-forms of degree n on X. When
$\mathcal A^{p,(\mathrm {cl})}(X,n)$
 of (closed) p-forms of degree n on X. When 
 $\alpha \in \Omega ^2(X)^G$
, we say that
$\alpha \in \Omega ^2(X)^G$
, we say that 
 $(\alpha ,\mu )$
 satisfies the multiplicative moment condition if
$(\alpha ,\mu )$
 satisfies the multiplicative moment condition if 
 $$ \begin{align} \forall u\in\mathfrak g,~~i_{\vec u}\alpha=\langle\mu^*\underline\omega_0,u\rangle. \end{align} $$
$$ \begin{align} \forall u\in\mathfrak g,~~i_{\vec u}\alpha=\langle\mu^*\underline\omega_0,u\rangle. \end{align} $$
This is condition (B2) in [Reference Van den Bergh31].
Lemma 6.2. The space of homotopies between 
 $[\mu ]^*\underline \omega _0$
 and
$[\mu ]^*\underline \omega _0$
 and 
 $0$
 in
$0$
 in 
 $\mathcal A^{2,\mathrm {cl}}([X/G],1)$
 is discrete. It is the space of invariant
$\mathcal A^{2,\mathrm {cl}}([X/G],1)$
 is discrete. It is the space of invariant 
 $2$
-forms
$2$
-forms 
 $\alpha \in \Omega ^2(X)^G$
 satisfying (𝕄).
$\alpha \in \Omega ^2(X)^G$
 satisfying (𝕄).
Proof. The cochain complex of 
 $2$
-forms on
$2$
-forms on 
 $[X/G]$
 is given by
$[X/G]$
 is given by 

The result follows from the fact that, by definition, 
 $\partial $
 is given by
$\partial $
 is given by 
 $\langle \partial \alpha ,u\rangle =i_{\vec u}\alpha $
 for every
$\langle \partial \alpha ,u\rangle =i_{\vec u}\alpha $
 for every 
 $u\in \mathfrak g$
.
$u\in \mathfrak g$
.
This can be extended to the following, where we recognize the extra condition (B1) of [Reference Van den Bergh31].
Lemma 6.3. The space of homotopies between 
 $[\mu ]^*\underline \omega $
 and
$[\mu ]^*\underline \omega $
 and 
 $0$
 in
$0$
 in 
 $\mathcal A^{2,\mathrm {cl}}([X/G],1)$
 is discrete. It is the space of
$\mathcal A^{2,\mathrm {cl}}([X/G],1)$
 is discrete. It is the space of 
 $2$
-forms
$2$
-forms 
 $\alpha \in \Omega ^2(X)^G$
 satisfying (𝕄) and
$\alpha \in \Omega ^2(X)^G$
 satisfying (𝕄) and 
 $$ \begin{align*} d_{\mathrm{dR}}\alpha&=\mu^*\underline\omega_1. \end{align*} $$
$$ \begin{align*} d_{\mathrm{dR}}\alpha&=\mu^*\underline\omega_1. \end{align*} $$
Proof. The de Rham (cochain) complex of 
 $[X/G]$
 in weight
$[X/G]$
 in weight 
 $\ge 2$
 is the total (cochain) complex of the bicomplex
$\ge 2$
 is the total (cochain) complex of the bicomplex 

The space of 2-forms 
 $\alpha \in \Omega ^2(X)^G$
 mapped on
$\alpha \in \Omega ^2(X)^G$
 mapped on 
 $\mu ^*\omega \in \Omega ^3(X)^G\oplus (\Omega ^1(X)\otimes \mathfrak g^*)^G$
 by
$\mu ^*\omega \in \Omega ^3(X)^G\oplus (\Omega ^1(X)\otimes \mathfrak g^*)^G$
 by 
 $d_{\mathrm {dR}}\oplus \partial $
 has the expected description.
$d_{\mathrm {dR}}\oplus \partial $
 has the expected description.
 Now thanks to [Reference Pantev, Toën, Vaquié and Vezzosi21], the non-degeneracy condition (that is, (B3) in [Reference Van den Bergh31]) defines a union of connected components in the space of (closed) 
 $2$
-forms. Therefore, we have the following result (which is already implicit in [Reference Calaque7, Reference Safronov23]).
$2$
-forms. Therefore, we have the following result (which is already implicit in [Reference Calaque7, Reference Safronov23]).
Theorem 6.4. The space of lagrangian structures on 
 $[\mu ]$
 is discrete; it is the set of
$[\mu ]$
 is discrete; it is the set of 
 $2$
-forms
$2$
-forms 
 $\alpha \in \Omega ^2(X)^G$
 such that (𝕄).
$\alpha \in \Omega ^2(X)^G$
 such that (𝕄).
 In particular, the space of lagrangian structures on 
 $[\mu ]$
 (or, equivalently, the set of quasi-hamiltonian structures on X with group valued moment map
$[\mu ]$
 (or, equivalently, the set of quasi-hamiltonian structures on X with group valued moment map 
 $\mu $
) is a subset of
$\mu $
) is a subset of 
 $\Omega ^2(X)$
.
$\Omega ^2(X)$
.
Corollary 6.5. Two lagrangian structures on 
 $[\mu ]$
 coincide if and only if the associated
$[\mu ]$
 coincide if and only if the associated 
 $2$
-forms on X are the same.
$2$
-forms on X are the same.
Remark 6.6. Here is how we understand geometrically the 
 $2$
-form on X we get from an
$2$
-form on X we get from an 
 $\alpha $
 satisfying (𝕄). The pull-back of
$\alpha $
 satisfying (𝕄). The pull-back of 
 $\underline \omega _0$
 along the quotient
$\underline \omega _0$
 along the quotient 
 $G\to [G/G]$
 is zero. As
$G\to [G/G]$
 is zero. As 
 $[\mu ]^*\underline \omega _0\sim 0$
 via
$[\mu ]^*\underline \omega _0\sim 0$
 via 
 $\alpha $
, we get a self-homotopy of
$\alpha $
, we get a self-homotopy of 
 $0$
 in the space
$0$
 in the space 
 $2$
-forms of degree
$2$
-forms of degree 
 $1$
 on the fiber product
$1$
 on the fiber product 
 $$\begin{align*}[X/G]\underset{[G/G]}{\times}G\simeq X. \end{align*}$$
$$\begin{align*}[X/G]\underset{[G/G]}{\times}G\simeq X. \end{align*}$$
Such a self-homotopy is a 
 $2$
-form of degree
$2$
-form of degree 
 $0$
 on X, which is nothing but
$0$
 on X, which is nothing but 
 $\alpha $
.
$\alpha $
.
6.2 Identifying two lagrangian structures: proof of theorem 6.1
Consider the composition
 $$\begin{align*}\mathrm{Spec}(A_V)=X_V\twoheadrightarrow[X_V/\mathrm{GL}_V]\hookrightarrow\mathrm{Perf}_A. \end{align*}$$
$$\begin{align*}\mathrm{Spec}(A_V)=X_V\twoheadrightarrow[X_V/\mathrm{GL}_V]\hookrightarrow\mathrm{Perf}_A. \end{align*}$$
It is given by an 
 $A-A_V$
-bimodule M which induces a chain
$A-A_V$
-bimodule M which induces a chain 

given by
 $$\begin{align*}a_0\otimes a_1\otimes\dots\otimes a_n\mapsto\mathrm{tr}(\hat a_0)d\mathrm{tr}(\hat a_1)\dots d\mathrm{tr}(\hat a_n) \end{align*}$$
$$\begin{align*}a_0\otimes a_1\otimes\dots\otimes a_n\mapsto\mathrm{tr}(\hat a_0)d\mathrm{tr}(\hat a_1)\dots d\mathrm{tr}(\hat a_n) \end{align*}$$
(that is, 
 $\underline {\mathrm {tr}}$
 again, cf (6.1)). Thus, the
$\underline {\mathrm {tr}}$
 again, cf (6.1)). Thus, the 
 $2$
-forms match on
$2$
-forms match on 
 $X_V$
, and therefore, the associated lagrangian structures as well thanks to the previous subsection.
$X_V$
, and therefore, the associated lagrangian structures as well thanks to the previous subsection.
Example 6.7.
- 
(i) Let us get back to section 5.4.1, where A is a localization of the path algebra of the  $A_2$
 quiver and $A_2$
 quiver and $\Phi $
 denotes the associated multiplicative moment map. Thanks to the computations in section 5.4.1, theorem 6.1 applies and the $\Phi $
 denotes the associated multiplicative moment map. Thanks to the computations in section 5.4.1, theorem 6.1 applies and the $1$
-Calabi–Yau structure on $1$
-Calabi–Yau structure on $\Phi $
 exhibited in [Reference Bozec, Calaque and Scherotzke4] induces the same lagrangian structure on for some dimension vector $\Phi $
 exhibited in [Reference Bozec, Calaque and Scherotzke4] induces the same lagrangian structure on for some dimension vector $$\begin{align*}\big[\hat\Phi\big]:\big[\mathrm{Rep}(A,\vec n)/GL_{\vec n}\big]{\longrightarrow}\big[GL_{\vec n}/GL_{\vec n}\big], \end{align*}$$ $$\begin{align*}\big[\hat\Phi\big]:\big[\mathrm{Rep}(A,\vec n)/GL_{\vec n}\big]{\longrightarrow}\big[GL_{\vec n}/GL_{\vec n}\big], \end{align*}$$ $\vec n=(n_1,n_2)$
, as the one induced by Van den Bergh’s quasi-Hamiltonian $\vec n=(n_1,n_2)$
, as the one induced by Van den Bergh’s quasi-Hamiltonian $GL_{\vec n}$
-structure in [Reference Van den Bergh31]. $GL_{\vec n}$
-structure in [Reference Van den Bergh31].
- 
(ii) Similarly, using section 5.4.2, we finally prove the conjecture raised in [Reference Bozec, Calaque and Scherotzke4, §5.3], which is the identical statement for an arbitrary quiver Q. 
Acknowledgements
We thank Maxime Fairon for discussions about double brackets. We also learned a lot about those during the Villaroger 2021 workshop on double Poisson structures, of which we thank all the participants.
Competing interest
The authors have no competing interest to declare.
Funding statement
The first and second author have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 768679).
Ethical standards
The research meets all ethical guidelines, including adherence to the legal requirements of the study country.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
