Skip to main content
×
×
Home

BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING

  • BEN ADCOCK (a1), ANDERS C. HANSEN (a2) (a3), CLARICE POON (a2) and BOGDAN ROMAN (a2)
Abstract

This paper presents a framework for compressed sensing that bridges a gap between existing theory and the current use of compressed sensing in many real-world applications. In doing so, it also introduces a new sampling method that yields substantially improved recovery over existing techniques. In many applications of compressed sensing, including medical imaging, the standard principles of incoherence and sparsity are lacking. Whilst compressed sensing is often used successfully in such applications, it is done largely without mathematical explanation. The framework introduced in this paper provides such a justification. It does so by replacing these standard principles with three more general concepts: asymptotic sparsity, asymptotic incoherence and multilevel random subsampling. Moreover, not only does this work provide such a theoretical justification, it explains several key phenomena witnessed in practice. In particular, and unlike the standard theory, this work demonstrates the dependence of optimal sampling strategies on both the incoherence structure of the sampling operator and on the structure of the signal to be recovered. Another key consequence of this framework is the introduction of a new structured sampling method that exploits these phenomena to achieve significant improvements over current state-of-the-art techniques.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
[1] Adcock, B. and Hansen, A. C., ‘A generalized sampling theorem for stable reconstructions in arbitrary bases’, J. Fourier Anal. Appl. 18(4) (2012), 685716.
[2] Adcock, B. and Hansen, A. C., ‘Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon’, Appl. Comput. Harmon. Anal. 32(3) (2012), 357388.
[3] Adcock, B. and Hansen, A. C., ‘Generalized sampling and infinite-dimensional compressed sensing’, Found. Comput. Math. 16(5) (2016), 12631323.
[4] Adcock, B., Hansen, A. C., Herrholz, E. and Teschke, G., ‘Generalized sampling: extension to frames and inverse and ill-posed problems’, Inverse Problems 29(1) (2013), 015008.
[5] Adcock, B., Hansen, A. C. and Poon, C., ‘Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem’, SIAM J. Math. Anal. 45(5) (2013), 31143131.
[6] Adcock, B., Hansen, A. C. and Poon, C., ‘On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate’, Appl. Comput. Harmon. Anal. 36(3) (2014), 387415.
[7] Adcock, B., Hansen, A. C., Roman, B. and Teschke, G., ‘Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum’, Adv. Imaging Electron Phys. 182 (2014), 187279.
[8] Baraniuk, R. G., Cevher, V., Duarte, M. F. and Hedge, C., ‘Model-based compressive sensing’, IEEE Trans. Inform. Theory 56(4) (2010), 19822001.
[9] Bastounis, A. and Hansen, A. C., ‘On the absence of uniform recovery in many real-world applications of compressed sensing and the RIP & nullspace property in levels’, SIAM J. Imaging Sci. (to appear).
[10] Bigot, J., Boyer, C. and Weiss, P., ‘An analysis of block sampling strategies in compressed sensing’, IEEE Trans. Inform. Theory 62(4) (2016), 21252139.
[11] Bourrier, A., Davies, M. E., Peleg, T., Pérez, P. and Gribonval, R., ‘Fundamental performance limits for ideal decoders in high-dimensional linear inverse problems’, IEEE Trans. Inform. Theory 60(12) (2014), 79287946.
[12] Boyer, C., Bigot, J. and Weiss, P., ‘Compressed sensing with structured sparsity and structured acquisition’, Preprint, 2015, arXiv:1505.01619.
[13] Candès, E. and Donoho, D. L., ‘Recovering edges in ill-posed inverse problems: optimality of curvelet frames’, Ann. Statist. 30(3) (2002), 784842.
[14] Candès, E. J., ‘An introduction to compressive sensing’, IEEE Signal Process. Mag. 25(2) (2008), 2130.
[15] Candès, E. J. and Donoho, D., ‘New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities’, Comm. Pure Appl. Math. 57(2) (2004), 219266.
[16] Candès, E. J. and Plan, Y., ‘A probabilistic and RIPless theory of compressed sensing’, IEEE Trans. Inform. Theory 57(11) (2011), 72357254.
[17] Candès, E. J. and Romberg, J., ‘Sparsity and incoherence in compressive sampling’, Inverse Problems 23(3) (2007), 969985.
[18] Candès, E. J., Romberg, J. and Tao, T., ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inform. Theory 52(2) (2006), 489509.
[19] Carson, W. R., Chen, M., Rodrigues, M. R. D., Calderbank, R. and Carin, L., ‘Communications-inspired projection design with application to compressive sensing’, SIAM J. Imaging Sci. 5(4) (2012), 11851212.
[20] Chauffert, N., Ciuciu, P., Kahn, J. and Weiss, P., ‘Variable density sampling with continuous trajectories’, SIAM J. Imaging Sci. 7(4) (2014), 19621992.
[21] Chauffert, N., Weiss, P., Kahn, J. and Ciuciu, P., ‘Gradient waveform design for variable density sampling in magnetic resonance imaging’, Preprint, 2014, arXiv:1412.4621.
[22] Chi, Y., Scharf, L. L., Pezeshki, A. and Calderbank, R., ‘Sensitivity to basis mismatch in compressed sensing’, IEEE Trans. Signal Process. 59(5) (2011), 21822195.
[23] Cohen, A., Dahmen, W. and DeVore, R., ‘Compressed sensing and best k-term approximation’, J. Amer. Math. Soc. 22(1) (2009), 211231.
[24] Cormen, T. H., Stein, C., Rivest, R. L. and Leiserson, C. E., Introduction to Algorithms, 2nd edn (MIT Press, Cambridge, MA; McGraw-Hill Book Co., Boston, MA, 2001).
[25] Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H.-G. and Teschke, G., ‘The uncertainty principle associated with the continuous shearlet transform’, Int. J. Wavelets Multiresolut. Inf. Process. 6(2) (2008), 157181.
[26] Dahlke, S., Kutyniok, G., Steidl, G. and Teschke, G., ‘Shearlet coorbit spaces and associated Banach frames’, Appl. Comput. Harmon. Anal. 27(2) (2009), 195214.
[27] Daubechies, I., ‘Orthonormal bases of compactly supported wavelets’, Comm. Pure Appl. Math. 41(7) (1988), 909996.
[28] Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992).
[29] Davenport, M. A., Duarte, M. F., Eldar, Y. C. and Kutyniok, G., ‘Introduction to compressed sensing’, inCompressed Sensing: Theory and Applications (Cambridge University Press, Cambridge, 2011).
[30] DeVore, R. A., ‘Nonlinear approximation’, Acta Numer. 7 (1998), 51150.
[31] Do, M. N. and Vetterli, M., ‘The contourlet transform: an efficient directional multiresolution image representation’, IEEE Trans. Image Process. 14(12) (2005), 20912106.
[32] Donoho, D. L., ‘Compressed sensing’, IEEE Trans. Inform. Theory 52(4) (2006), 12891306.
[33] Donoho, D. L. and Huo, X., ‘Uncertainty principles and ideal atomic decomposition’, IEEE Trans. Inform. Theory 47 (2001), 28452862.
[34] Donoho, D. L. and Kutyniok, G., ‘Microlocal analysis of the geometric separation problem’, Comm. Pure Appl. Math. 66(1) (2013), 147.
[35] Donoho, D. L. and Tanner, J., ‘Neighborliness of randomly-projected simplices in high dimensions’, Proc. Natl Acad. Sci. USA 102(27) (2005), 94529457.
[36] Donoho, D. L. and Tanner, J., ‘Counting faces of randomly-projected polytopes when the projection radically lowers dimension’, J. Amer. Math. Soc. 22(1) (2009), 153.
[37] Duarte, M. F., Davenport, M. A., Takhar, D., Laska, J., Kelly, K. and Baraniuk, R. G., ‘Single-pixel imaging via compressive sampling’, IEEE Signal Process. Mag. 25(2) (2008), 8391.
[38] Duarte, M. F. and Eldar, Y. C., ‘Structured compressed sensing: from theory to applications’, IEEE Trans. Signal Process. 59(9) (2011), 40534085.
[39] Eldar, Y. C. and Kutyniok, G. (Eds.), Compressed Sensing: Theory and Applications (Cambridge University Press, Cambridge, 2012).
[40] Fornasier, M. and Rauhut, H., ‘Compressive sensing’, inHandbook of Mathematical Methods in Imaging (Springer, New York, NY, 2011), 187228.
[41] Foucart, S. and Rauhut, H., A Mathematical Introduction to Compressive Sensing (Birkhäuser/Springer, New York, NY, 2013).
[42] Gröchenig, K., Rzeszotnik, Z. and Strohmer, T., ‘Convergence analysis of the finite section method and banach algebras of matrices’, Integr. Equat. Oper. Th. 67(2) (2010), 183202.
[43] Gross, D., ‘Recovering low-rank matrices from few coefficients in any basis’, IEEE Trans. Inform. Theory 57(3) (2011), 15481566.
[44] Gross, D., Krahmer, F. and Kueng, R., ‘A partial derandomization of phaselift using spherical designs’, J. Fourier Anal. Appl. 21(2) (2015), 229266.
[45] Guerquin-Kern, M., Häberlin, M., Pruessmann, K. and Unser, M., ‘A fast wavelet-based reconstruction method for magnetic resonance imaging’, IEEE Transactions on Medical Imaging 30(9) (2011), 16491660.
[46] Guerquin-Kern, M., Lejeune, L., Pruessmann, K. P. and Unser, M., ‘Realistic analytical phantoms for parallel Magnetic Resonance Imaging’, IEEE Trans. Med. Imaging 31(3) (2012), 626636.
[47] Hansen, A. C., ‘On the approximation of spectra of linear operators on hilbert spaces’, J. Funct. Anal. 254(8) (2008), 20922126.
[48] Hansen, A. C., ‘On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators’, J. Amer. Math. Soc. 24(1) (2011), 81124.
[49] Herman, M. A., ‘Compressive sensing with partial-complete, multiscale Hadamard waveforms’, inImaging and Applied Optics (Optical Society of America, Arlington, VA, 2013), CM4C.3.
[50] Herman, M. A., Weston, T., McMackin, L., Li, Y., Chen, J. and Kelly, K. F., ‘Recent results in single-pixel compressive imaging using selective measurement strategies’, inProc. SPIE 9484, Compressive Sensing IV 94840A (SPIE, Baltimore, MD, 2015).
[51] Hernández, E. and Weiss, G., A First Course on Wavelets, Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1996).
[52] Hrycak, T. and Gröchenig, K., ‘Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method’, J. Comput. Phys. 229(3) (2010), 933946.
[53] Jones, A., Tamtögl, A., Calvo-Almazán, I. and Hansen, A., ‘Continuous compressed sensing for surface dynamical processes with helium atom scattering’, Sci. Rep. 6 (2016), 27776 EP –, 06.
[54] Jones, A. D., Adcock, B. and Hansen, A. C., ‘On asymptotic incoherence and its implications for compressed sensing of inverse problems’, IEEE Trans. Inform. Theory 62(2) (2016), 10201037.
[55] Krahmer, F. and Ward, R., ‘Stable and robust sampling strategies for compressive imaging’, IEEE Trans. Image Process. 23(2) (2014), 612622.
[56] Kutyniok, G., Lemvig, J. and Lim, W.-Q., ‘Compactly supported shearlets’, inApproximation Theory XIII: San Antonio 2010, (eds. Neamtu, M. and Schumaker, L.) Springer Proceedings in Mathematics, 13 (Springer, New York, 2012), 163186.
[57] Kutyniok, G. and Lim, W.-Q., ‘Optimal compressive imaging of Fourier data’, Preprint, 2015, arXiv:1510.05029.
[58] Larson, P. E. Z., Hu, S., Lustig, M., Kerr, A. B., Nelson, S. J., Kurhanewicz, J., Pauly, J. M. and Vigneron, D. B., ‘Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13c studies’, Magn. Reson. Med. 65(3) (2011), 610619.
[59] Ledoux, M., The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, 89 (American Mathematical Society, Providence, RI, 2001).
[60] Li, C. and Adcock, B., ‘Compressed sensing with local structure: uniform recovery guarantees for the sparsity in levels class’, Preprint, 2016, arXiv:1601.01988.
[61] Lustig, M., ‘Sparse MRI’, PhD Thesis, Stanford University, 2008.
[62] Lustig, M., Donoho, D. L. and Pauly, J. M., ‘Sparse MRI: the application of compressed sensing for rapid MRI imaging’, Magn. Reson. Imaging 58(6) (2007), 11821195.
[63] Lustig, M., Donoho, D. L., Santos, J. M. and Pauly, J. M., ‘Compressed Sensing MRI’, IEEE Signal Process. Mag. 25(2) (2008), 7282.
[64] Mallat, S. G., A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn (Elsevier/Academic Press, Amsterdam, 2009).
[65] McDiarmid, C., ‘Concentration’, inProbabilistic Methods for Algorithmic Discrete Mathematics, Algorithms and Combinatorics, 16 (Springer, Berlin, 1998), 195248.
[66] Po, D. D.-Y. and Do, M. N., ‘Directional multiscale modeling of images using the contourlet transform’, IEEE Trans. Image Process. 15(6) (2006), 16101620.
[67] Poon, C., ‘A consistent, and stable approach to generalized sampling’, J. Fourier Anal. Appl. 20(5) (2014), 9851019.
[68] Poon, C., ‘On the role of total variation in compressed sensing’, SIAM J. Imaging Sci. 8(1) (2015), 682720.
[69] Poon, C., ‘Structure dependent sampling in compressed sensing: theoretical guarantees for tight frames’, Appl. Comput. Harmon. Anal. (2015), (to appear).
[70] Puy, G., Marques, J. P., Gruetter, R., Thiran, J., Van De Ville, D., Vandergheynst, P. and Wiaux, Y., ‘Spread spectrum Magnetic Resonance Imaging’, IEEE Trans. Med. Imaging 31(3) (2012), 586598.
[71] Puy, G., Vandergheynst, P. and Wiaux, Y., ‘On variable density compressive sampling’, IEEE Signal Process. Letters 18 (2011), 595598.
[72] Rauhut, H. and Ward, R., ‘Interpolation via weighted 1 minimization’, Appl. Comput. Harmon. Anal. 40(2) (2016), 321351.
[73] Roman, B., Adcock, B. and Hansen, A. C., ‘On asymptotic structure in compressed sensing’, Preprint, 2014, arXiv:1406.4178.
[74] Romberg, J., ‘Imaging via compressive sampling’, IEEE Signal Process. Mag. 25(2) (2008), 1420.
[75] Rudelson, M., ‘Random vectors in the isotropic position’, J. Funct. Anal. 164(1) (1999), 6072.
[76] Strohmer, T., ‘Measure what should be measured: progress and challenges in compressive sensing’, IEEE Signal Process. Letters 19(12) (2012), 887893.
[77] Studer, V., Bobin, J., Chahid, M., Mousavi, H. S., Candès, E. and Dahan, M., ‘Compressive fluorescence microscopy for biological and hyperspectral imaging’, Proc. Natl. Acad. Sci. USA 109(26) (2012), E1679E1687.
[78] Takhar, D., Laska, J. N., Wakin, M. B., Duarte, M. F., Baron, D., Sarvotham, S., Kelly, K. F. and Baraniuk, R. G., ‘A new compressive imaging camera architecture using optical-domain compression’, inProc. of Computational Imaging IV at SPIE Electronic Imaging (2006), 4352.
[79] Talagrand, M., ‘New concentration inequalities in product spaces’, Invent. Math. 126(3) (1996), 505563.
[80] Traonmilin, Y. and Gribonval, R., ‘Stable recovery of low-dimensional cones in Hilbert spaces: one RIP to rule them all’, Appl. Comput. Harmon. Anal. (2016), (to appear).
[81] Tropp, J. A., ‘On the conditioning of random subdictionaries’, Appl. Comput. Harmon. Anal. 25(1) (2008), 124.
[82] Tsaig, Y. and Donoho, D. L., ‘Extensions of compressed sensing’, Signal Process. 86(3) (2006), 549571.
[83] Wang, L., Carlson, D., Rodrigues, M. R. D., Wilcox, D., Calderbank, R. and Carin, L., ‘Designed measurements for vector count data’, inAdvances in Neural Information Processing Systems (2013), 11421150.
[84] Wang, Q., Zenge, M., Cetingul, H. E., Mueller, E. and Nadar, M. S., ‘Novel sampling strategies for sparse mr image reconstruction’, Proc. Int. Soc. Mag. Res. in Med. (22) (2014).
[85] Wang, Z. and Arce, G. R., ‘Variable density compressed image sampling’, IEEE Trans. Image Process. 19(1) (2010), 264270.
[86] Zomet, A. and Nayar, S. K., ‘Lensless imaging with a controllable aperture’, in2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), 339346.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Sigma
  • ISSN: -
  • EISSN: 2050-5094
  • URL: /core/journals/forum-of-mathematics-sigma
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed