Skip to main content
×
×
Home

MINIMALITY AND MUTATION-EQUIVALENCE OF POLYGONS

  • ALEXANDER KASPRZYK (a1), BENJAMIN NILL (a2) and THOMAS PRINCE (a3)
Abstract

We introduce a concept of minimality for Fano polygons. We show that, up to mutation, there are only finitely many Fano polygons with given singularity content, and give an algorithm to determine representatives for all mutation-equivalence classes of such polygons. This is a key step in a program to classify orbifold del Pezzo surfaces using mirror symmetry. As an application, we classify all Fano polygons such that the corresponding toric surface is qG-deformation-equivalent to either (i) a smooth surface; or (ii) a surface with only singularities of type $1/3(1,1)$ .

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      MINIMALITY AND MUTATION-EQUIVALENCE OF POLYGONS
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      MINIMALITY AND MUTATION-EQUIVALENCE OF POLYGONS
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      MINIMALITY AND MUTATION-EQUIVALENCE OF POLYGONS
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
[1] Akhtar, M., Coates, T., Corti, A., Heuberger, L., Kasprzyk, A. M., Oneto, A., Petracci, A., Prince, T. and Tveiten, K., ‘Mirror symmetry and the classification of orbifold del Pezzo surfaces’, Proc. Amer. Math. Soc. 144(2) (2016), 513527.
[2] Akhtar, M., Coates, T., Galkin, S. and Kasprzyk, A. M., ‘Minkowski polynomials and mutations’, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 094, 17.
[3] Akhtar, M. and Kasprzyk, A. M., ‘Singularity content’, Preprint (2014), arXiv:1401.5458 [math.AG].
[4] Akhtar, M. and Kasprzyk, A. M., ‘Mutations of fake weighted projective planes’, Proc. Edinb. Math. Soc. (2) 59(2) (2016), 271285.
[5] Auroux, D., ‘Mirror symmetry and T-duality in the complement of an anticanonical divisor’, J. Gökova Geom. Topol. GGT 1 (2007), 5191.
[6] Averkov, G., Krümpelmann, J. and Nill, B., ‘Largest integral simplices with one interior integral point: solution of Hensley’s conjecture and related results’, Adv. Math. 274 (2015), 118166.
[7] Batyrev, V. V., ‘Higher dimensional toric varieties with ample anticanonical class’, PhD Thesis, Moscow State University, 1985, Text in Russian.
[8] Batyrev, V. V., ‘Toric degenerations of Fano varieties and constructing mirror manifolds’, inThe Fano Conference (Univ. Torino, Turin, 2004), 109122.
[9] Bernšteĭn, I. N., Gel’fand, I. M. and Ponomarev, V. A.,‘Coxeter functors, and Gabriel’s theorem’, Uspekhi Mat. Nauk 28(2(170)) (1973), 1933.
[10] Brown, G. and Kasprzyk, A. M., The graded ring database, online database, http://www.grdb.co.uk/.
[11] Coates, T., Corti, A., Galkin, S., Golyshev, V. and Kasprzyk, A. M., ‘Mirror symmetry and Fano manifolds’, inEuropean Congress of Mathematics Kraków, 2–7 July, 2012 (Eur. Math. Soc., Zürich, 2014), 285300.
[12] Coates, T., Corti, A., Galkin, S. and Kasprzyk, A., ‘Quantum periods for 3-dimensional Fano manifolds’, Geom. Topol. 20(1) (2016), 103256.
[13] Coates, T., Kasprzyk, A. M. and Prince, T., ‘Laurent inversion’, Preprint (2017), arXiv:1707.05842 [math.AG].
[14] Corti, A. and Heuberger, L., ‘Del Pezzo surfaces with [[()[]mml:mfrac[]()]][[()[]mml:mrow []()]]1[[()[]/mml:mrow[]()]] [[()[]mml:mrow []()]]3[[()[]/mml:mrow[]()]][[()[]/mml:mfrac[]()]](1, 1) points’, Manuscripta Math. 153(1–2) (2017), 71118.
[15] Dais, D. I., ‘Classification of toric log del Pezzo surfaces having Picard number 1 and index ⩽3’, Results Math. 54(3–4) (2009), 219252.
[16] Fock, V. V. and Goncharov, A. B., ‘Cluster ensembles, quantization and the dilogarithm. II. The intertwiner’, inAlgebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin., Vol. I, Progress in Mathematics, 269 (Birkhäuser Boston Inc., Boston, MA, 2009), 655673.
[17] Fomin, S. and Zelevinsky, A., ‘Cluster algebras. I. Foundations’, J. Amer. Math. Soc. 15(2) (2002), 497529. (electronic).
[18] Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies, 131 (Princeton University Press, Princeton, NJ, 1993), The William H. Roever Lectures in Geometry.
[19] Galkin, S. and Usnich, A., ‘Laurent phenomenon for Ginzburg-Landau potential’, IPMU Preprint 10-0100, 2010.
[20] Gross, M., Hacking, P. and Keel, S., ‘Birational geometry of cluster algebras’, Preprint (2013), arXiv:1309.2573 [math.AG].
[21] Gross, M., Hacking, P. and Keel, S., ‘Mirror symmetry for log Calabi–Yau surfaces I’, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 65168.
[22] Gross, M. and Siebert, B., ‘From real affine geometry to complex geometry’, Ann. of Math. (2) 174(3) (2011), 13011428.
[23] Gross, M. and Siebert, B., ‘An invitation to toric degenerations’, inSurveys in Differential Geometry, Vol. XVI, Geometry of Special Holonomy and Related Topics, Surveys in Differential Geometry, 16 (Int. Press, Somerville, MA, 2011), 4378.
[24] Haase, C. and Schicho, J., ‘Lattice polygons and the number 2i + 7’, Amer. Math. Monthly 116(2) (2009), 151165.
[25] Hacking, P. and Prokhorov, Y., ‘Smoothable del Pezzo surfaces with quotient singularities’, Compos. Math. 146(1) (2010), 169192.
[26] Ilten, N. O., ‘Mutations of Laurent polynomials and flat families with toric fibers’, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), 4753.
[27] Kasprzyk, A. M., ‘Bounds on fake weighted projective space’, Kodai Math. J. 32 (2009), 197208.
[28] Kasprzyk, A. M., Kreuzer, M. and Nill, B., ‘On the combinatorial classification of toric log del Pezzo surfaces’, LMS J. Comput. Math. 13 (2010), 3346.
[29] Kollár, J. and Shepherd–Barron, N. I., ‘Threefolds and deformations of surface singularities’, Invent. Math. 91(2) (1988), 299338.
[30] Kontsevich, M. and Soibelman, Y., ‘Affine structures and non-Archimedean analytic spaces’, inThe Unity of Mathematics, Progress in Mathematics, 244 (Birkhäuser Boston, Boston, MA, 2006), 321385.
[31] Lagarias, J. C. and Ziegler, G. M., ‘Bounds for lattice polytopes containing a fixed number of interior points in a sublattice’, Canad. J. Math. 43(5) (1991), 10221035.
[32] Mahler, K., ‘Ein Übertragungsprinzip für konvexe Körper’, Časopis Pěst. Mat. Fys. 68 (1939), 93102.
[33] Mandel, T., ‘Classification of rank 2 cluster varieties’, Preprint (2014), arXiv:1407.6241 [math.AG].
[34] Perling, M., ‘Combinatorial aspects of exceptional sequences on (rational) surfaces’, Preprint (2013), arXiv:1311.7349 [math.AG].
[35] Pick, G. A., ‘Geometrisches zur zahlenlehre’, Sitzungber Lotos 19 (1899), 311319.
[36] Prince, T., ‘Smoothing toric Fano surfaces using the Gross–Siebert algorithm’, Preprint (2015), arXiv:1504.05969 [math.AG].
[37] Rabinowitz, S., ‘A census of convex lattice polygons with at most one interior lattice point’, Ars Combin. 28 (1989), 8396.
[38] Reid, M., ‘Young person’s guide to canonical singularities’, inAlgebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, 46 (American Mathematical Society, Providence, RI, 1987), 345414.
[39] Scott, P. R., ‘On convex lattice polygons’, Bull. Aust. Math. Soc. 15(3) (1976), 395399.
[40] Symington, M., ‘Four dimensions from two in symplectic topology’, inTopology and Geometry of Manifolds (Athens, GA, 2001), Proceedings of Symposia in Pure Mathematics, 71 (American Mathematical Society, Providence, RI, 2003), 153208.
[41] Wahl, J. M., ‘Elliptic deformations of minimally elliptic singularities’, Math. Ann. 253(3) (1980), 241262.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Sigma
  • ISSN: -
  • EISSN: 2050-5094
  • URL: /core/journals/forum-of-mathematics-sigma
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 111 *
Loading metrics...

Abstract views

Total abstract views: 234 *
Loading metrics...

* Views captured on Cambridge Core between 15th August 2017 - 15th August 2018. This data will be updated every 24 hours.