Skip to main content Accessibility help
×
Home

THE MOONSHINE MODULE FOR CONWAY’S GROUP

  • JOHN F. R. DUNCAN (a1) and SANDER MACK-CRANE (a1)

Abstract

We exhibit an action of Conway’s group – the automorphism group of the Leech lattice – on a distinguished super vertex operator algebra, and we prove that the associated graded trace functions are normalized principal moduli, all having vanishing constant terms in their Fourier expansion. Thus we construct the natural analogue of the Frenkel–Lepowsky–Meurman moonshine module for Conway’s group. The super vertex operator algebra we consider admits a natural characterization, in direct analogy with that conjectured to hold for the moonshine module vertex operator algebra. It also admits a unique canonically twisted module, and the action of the Conway group naturally extends. We prove a special case of generalized moonshine for the Conway group, by showing that the graded trace functions arising from its action on the canonically twisted module are constant in the case of Leech lattice automorphisms with fixed points, and are principal moduli for genus-zero groups otherwise.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      THE MOONSHINE MODULE FOR CONWAY’S GROUP
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      THE MOONSHINE MODULE FOR CONWAY’S GROUP
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      THE MOONSHINE MODULE FOR CONWAY’S GROUP
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[1]Aspinwall, P. S., ‘K3 surfaces and string duality’, inFields, Strings and Duality (Boulder, CO, 1996) (World Scientific, River Edge, NJ, 1997), 421540.
[2]Borcherds, R., ‘Vertex algebras, Kac–Moody algebras, and the monster’, Proc. Natl Acad. Sci. USA 83(10) (1986), 30683071.
[3]Borcherds, R. E., ‘Monstrous moonshine and monstrous Lie superalgebras’, Invent. Math. 109(2) (1992), 405444.
[4]Borcherds, R. E. and Ryba, A. J. E., ‘Modular moonshine II’, Duke Math. J. 83(2) (1996), 435459.
[5]Bridgeland, T., ‘Stability conditions on K3 surfaces’, Duke Math. J. 141(2) (2008), 241291.
[6]Carnahan, S., ‘Generalized moonshine I: genus-zero functions’, Algebra Number Theory 4(6) (2010), 649679.
[7]Carnahan, S., ‘Generalized moonshine, II: Borcherds products’, Duke Math. J. 161(5) (2012), 893950.
[8]Carnahan, S., ‘Generalized moonshine IV: monstrous lie algebras’, Preprint, 2012, arXiv:1208.6254.
[9]Carnahan, S., ‘Monstrous lie algebras’, RIMS Kôkyûroku 1872 (2014).
[10]Cheng, M. C. N., ‘K3 surfaces, N = 4 dyons and the Mathieu group M 24’, Commun. Number Theory Phys. 4(4) (2010), 623657.
[11]Cheng, M. C. N., Dong, X., Duncan, J. F. R., Harrison, S., Kachru, S. and Wrase, T., ‘Mock modular Mathieu moonshine modules’, Preprint, 2014, arXiv:1406.5502 [hep-th].
[12]Cheng, M. C. N. and Duncan, J. F. R., ‘The largest Mathieu group and (mock) automorphic forms’, inString-Math 2011, Proceedings of Symposia in Pure Mathematics, 85 (American Mathematical Society, Providence, RI, 2012), 5382.
[13]Cheng, M. C. N. and Duncan, J. F. R., ‘On Rademacher sums, the largest Mathieu group, and the holographic modularity of moonshine’, Commun. Number Theory Phys. 6(3) (2012), 697758.
[14]Cheng, M. C. N., Duncan, J. F. R. and Harvey, J. A., ‘Umbral moonshine’, Commun. Number Theory Phys. 8(2) (2014), 101242.
[15]Cheng, M. C. N., Duncan, J. F. R. and Harvey, J. A., ‘Umbral moonshine and the Niemeier lattices’, Res. Math. Sci. 1(3) (2014), 181.
[16]Conway, J. H., ‘A perfect group of order 8, 315, 553, 613, 086, 720, 000 and the sporadic simple groups’, Proc. Natl Acad. Sci. USA 61 (1968), 398400.
[17]Conway, J. H., ‘A characterisation of Leech’s lattice’, Invent. Math. 7 (1969), 137142.
[18]Conway, J. H., ‘A group of order 8, 315, 553, 613, 086, 720, 000’, Bull. Lond. Math. Soc. 1 (1969), 7988.
[19]Conway, J. H. and Norton, S. P., ‘Monstrous moonshine’, Bull. Lond. Math. Soc. 11(3) (1979), 308339.
[20]Conway, J. H. and Sloane, N. J. A., Sphere Packings, Lattices and Groups, 3rd edn, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290 (Springer, New York, 1999). With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov.
[21]Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups (Clarendon, Oxford, 1985). (Maximal Subgroups and Ordinary Characters for Simple Groups. With comput. assist. from J. G. Thackray).
[22]Conway, J., McKay, J. and Sebbar, A., ‘On the discrete groups of moonshine’, Proc. Amer. Math. Soc. 132 (2004), 22332240.
[23]Dixon, L., Ginsparg, P. and Harvey, J., ‘Beauty and the beast: superconformal symmetry in a monster module’, Comm. Math. Phys. 119(2) (1988), 221241.
[24]Dixon, L., Harvey, J. A., Vafa, C. and Witten, E., ‘Strings on orbifolds’, Nuclear Phys. B 261(4) (1985), 678686.
[25]Dixon, L., Harvey, J. A., Vafa, C. and Witten, E., ‘Strings on orbifolds II’, Nuclear Phys. B 274(2) (1986), 285314.
[26]Dong, C., ‘Vertex algebras associated with even lattices’, J. Algebra 161(1) (1993), 245265.
[27]Dong, C. and Lepowsky, J., Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics, 112 (Birkhäuser Boston, Inc., Boston, MA, 1993).
[28]Dong, C., Li, H. and Mason, G., ‘Some twisted sectors for the moonshine module’, inMoonshine, The Monster, and Related Topics (South Hadley, MA, 1994), Contemporary Mathematics, 193 (American Mathematical Society, Providence, RI, 1996), 2543.
[29]Dong, C., Li, H. and Mason, G., ‘Twisted representations of vertex operator algebras’, Math. Ann. 310(3) (1998), 571600.
[30]Dong, C., Li, H. and Mason, G., ‘Modular invariance of trace functions in orbifold theory and generalized moonshine’, Comm. Math. Phys. 214 (2000), 156.
[31]Dong, C., Li, H., Mason, G. and Montague, P. S., ‘The radical of a vertex operator algebra’, inThe Monster and Lie Algebras (Columbus, OH, 1996), Ohio State Univ. Math. Res. Inst. Publ., 7 (de Gruyter, Berlin, 1998), 1725.
[32]Dong, C. and Mason, G., ‘Nonabelian orbifolds and the boson-fermion correspondence’, Comm. Math. Phys. 163(3) (1994), 523559.
[33]Dong, C. and Mason, G., ‘Rational vertex operator algebras and the effective central charge’, Int. Math. Res. Not. 56 (2004), 29893008.
[34]Dong, C. and Mason, G., ‘Integrability of C 2 -cofinite vertex operator algebras’, Int. Math. Res. Not. (2006), 115. Art. ID 80468.
[35]Dong, C. and Zhao, Z., ‘Twisted representations of vertex operator superalgebras’, Commun. Contemp. Math. 8(1) (2006), 101121.
[36]Duncan, J. F., ‘Super-moonshine for Conway’s largest sporadic group’, Duke Math. J. 139(2) (2007), 255315.
[37]Duncan, J. F. R. and Frenkel, I. B., ‘Rademacher sums, moonshine and gravity’, Commun. Number Theory Phys. 5(4) (2011), 1128.
[38]Duncan, J. F. R. and Mack-Crane, S., Derived Equivalences of K3 Surfaces and Twined Elliptic Genera, to appear (2015).
[39]Eguchi, T. and Hikami, K., ‘Note on twisted elliptic genus of K3 surface’, Phys. Lett. B 694 (2011), 446455.
[40]Eguchi, T., Ooguri, H. and Tachikawa, Y., ‘Notes on the K3 surface and the Mathieu group M 24’, Exp. Math. 20 (2011), 9196.
[41]Eguchi, T. and Taormina, A., ‘On the unitary representations of N = 2 and N = 4 superconformal algebras’, Phys. Lett. B 210(1–2) (1988), 125132.
[42]Eichler, M. and Zagier, D., The Theory of Jacobi Forms (Birkhäuser, Boston, MA, 1985).
[43]Ferenbaugh, C. R., ‘The genus-zero problem for n|h-type groups’, Duke Math. J. 72(1) (1993), 3163.
[44]Ford, D., McKay, J. and Norton, S., ‘More on replicable functions’, Comm. Algebra 22(13) (1994), 51755193.
[45]Frenkel, I. B., ‘Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory’, J. Funct. Anal. 44(3) (1981), 259327.
[46]Frenkel, E. and Szczesny, M., ‘Twisted modules over vertex algebras on algebraic curves’, Adv. Math. 187(1) (2004), 195227.
[47]Frenkel, I. B. and Kac, V. G., ‘Basic representations of affine Lie algebras and dual resonance models’, Invent. Math. 62(1) (1980/81), 2366.
[48]Frenkel, I. B., Huang, Y.-Z. and Lepowsky, J., ‘On axiomatic approaches to vertex operator algebras and modules’, Mem. Amer. Math. Soc. 104(494) (1993).
[49]Frenkel, I. B., Lepowsky, J. and Meurman, A., ‘A natural representation of the Fischer–Griess monster with the modular function J as character’, Proc. Natl Acad. Sci. USA 81(10) (1984), 32563260.
[50]Frenkel, I. B., Lepowsky, J. and Meurman, A., ‘A moonshine module for the monster’, inVertex Operators in Mathematics and Physics (Berkeley, CA, 1983), Mathematical Sciences Research Institute Publications, 3 (Springer, New York, 1985), 231273.
[51]Frenkel, I. B., Lepowsky, J. and Meurman, A., Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, 134 (Academic, Boston, MA, 1988).
[52]Frenkel, E. and Zvi, D. B., Vertex Algebras and Algebraic Curves, 2nd edn, Mathematical Surveys and Monographs, 88 (American Mathematical Society, Providence, RI, 2004).
[53]Gaberdiel, M. R., ‘An introduction to conformal field theory’, Rep. Progr. Phys. 63 (2000), 607667.
[54]Gaberdiel, M. R., ‘2D conformal field theory and vertex operator algebras’, Preprint, 2005, arXiv:hep-th/0509027.
[55]Gaberdiel, M. R., Hohenegger, S. and Volpato, R., ‘Mathieu moonshine in the elliptic genus of K3’, JHEP 1010 (2010) 062.
[56]Gaberdiel, M. R., Hohenegger, S. and Volpato, R., ‘Mathieu twining characters for K3’, JHEP 1009 (2010) 058 19 pages.
[57]Gaberdiel, M. R., Hohenegger, S. and Volpato, R., ‘Symmetries of K3 sigma models’, Commun. Number Theory Phys. 6(1) (2012), 150.
[58]Gaberdiel, M. R. and Volpato, R., ‘Mathieu moonshine and orbifold K3s’, Contrib. Math. Comput. Sci. 8 (2014), 109141.
[59]Gannon, T., ‘Much ado about Mathieu’, Preprint, 2012, arXiv:1211.5531 [math.RT].
[60]Golay, M. J. E., ‘Notes on digital coding’, Proc. IRE 37 (1949), 657.
[61]Griess, R. L. Jr., ‘The structure of the ‘monster’ simple group’, inProceedings of the Conference on Finite Groups (University of Utah, Park City, UT, 1975) (Academic, New York, 1976), 113118.
[62]Griess, R. L. Jr., ‘A construction of F 1 as automorphisms of a 196, 883-dimensional algebra’, Proc. Natl Acad. Sci. USA 78(2, Part 1) (1981), 686691.
[63]Griess, R. L. Jr., ‘The friendly giant’, Invent. Math. 69(1) (1982), 1102.
[64]Griffiths, P. A., Introduction to Algebraic Curves, Translations of Mathematical Monographs, 76 (American Mathematical Society, Providence, RI, 1989). Translated from the Chinese by Kuniko Weltin.
[65]Hoehn, G., ‘Generalized moonshine for the baby monster’, 2003, available at http://www.math.ksu.edu/ gerald/papers/.
[66]Hoehn, G., ‘Selbstduale vertexoperatorsuperalgebren und das babymonster (self-dual vertex operator super algebras and the baby monster)’, inBonner Mathematische Schriften (Bonn, 1996) Vol. 286 (Library of Mathematics, Bonn, 2007), 185.
[67]Holmes, P. E. and Wilson, R. A., ‘A new computer construction of the Monster using 2-local subgroups’, J. Lond. Math. Soc. (2) 67(2) (2003), 349364.
[68]Huybrechts, D., ‘On derived categories of K3 surfaces, symplectic automorphisms and the Conway group’, Preprint, 2013, arXiv:1309.6528 [math.AG].
[69]Ivanov, R. and Tuite, M., ‘Rational generalised moonshine from abelian orbifoldings of the moonshine module’, Nuclear Phys. B 635(3) (2002), 435472.
[70]Ivanov, R. and Tuite, M., ‘Some irrational generalised moonshine from orbifolds’, Nuclear Phys. B 635(3) (2002), 473491.
[71]Kac, V., Vertex Algebras for Beginners, 2nd edn, University Lecture Series, 10 (American Mathematical Society, Providence, RI, 1998).
[72]Kac, V. and Wang, W., ‘Vertex operator superalgebras and their representations’, inMathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), Contemporary Mathematics, 175 (American Mathematical Society, Providence, RI, 1994), 161191.
[73]Knapp, A. W., Elliptic Curves, Mathematical Notes, 40 (Princeton University Press, Princeton, NJ, 1992).
[74]Kondo, T., ‘The automorphism group of Leech lattice and elliptic modular functions’, J. Math. Soc. Japan 37(2) (1985), 337362.
[75]P. S. Landweber (Ed.), Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Mathematics, 1326 (Springer, Berlin 1988).
[76]Leech, J., ‘Some sphere packings in higher space’, Canad. J. Math. 16 (1964), 657682.
[77]Leech, J., ‘Notes on sphere packings’, Canad. J. Math. 19 (1967), 251267.
[78]Lepowsky, J. and Li, H., Introduction to Vertex Operator Algebras and Their Representations, Progress in Mathematics, 227 (Birkhäuser Boston Inc., Boston, MA, 2004).
[79]Lepowsky, J. and Wilson, R. L., ‘Construction of the affine Lie algebra A 1(1)’, Comm. Math. Phys. 62(1) (1978), 4353.
[80]Li, H. S., ‘Symmetric invariant bilinear forms on vertex operator algebras’, J. Pure Appl. Algebra 96(3) (1994), 279297.
[81]Li, H.-S., ‘Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules’, inMoonshine, the Monster, and Related Topics (South Hadley, MA, 1994), Contemporary Mathematics, 193 (American Mathematical Society, Providence, RI, 1996), 203236.
[82]Linton, S., Parker, R., Walsh, P. and Wilson, R., ‘Computer construction of the monster’, J. Group Theory 1(4) (1998), 307337.
[83]Mandelstam, S., ‘Dual-resonance models’, Phys. Rep. 13 (1974), 259353.
[84]Mason, G., ‘Finite groups and modular functions’, inThe Arcata Conference on Representations of Finite Groups (Arcata, CA, 1986), Proceedings of Symposia in Pure Mathematics, 47 (American Mathematical Society, Providence, RI, 1987), 181210. With an appendix by S. P. Norton.
[85]Mathieu, É., ‘Mémoire sur l’étude des fonctions de plusiers quantités, sur la manière de les former et sur les substitutions qui les laissent invariables’, J. Math. Pures Appl. (9) 6 (1861), 241323.
[86]Mathieu, É., ‘Sur la fonction cinq fois transitive de 24 quantités’, J. Math. Pures Appl. (9) 18 (1873), 2546.
[87]Mukai, S., ‘Finite groups of automorphisms of K3 surfaces and the Mathieu group’, Invent. Math. 94(1) (1988), 183221.
[88]Norton, S., ‘Generalized moonshine’, Proc. Sympos. Pure Math. 47 (1987), 208209.
[89]Norton, S., ‘From moonshine to the monster’, inProceedings on Moonshine and Related Topics (Montréal, QC, 1999), CRM Proceedings & Lecture Notes, 30 (American Mathematical Society, Providence, RI, 2001), 163171.
[90]Ono, K., Rolen, L. and Trebat-Leder, S., ‘Classical and umbral moonshine: connections and $p$-adic properties’, Preprint, 2014, arXiv:1403.3712 [math.NT].
[91]Queen, L., ‘Modular functions arising from some finite groups’, Math. Comp. 37(156) (1981), 547580.
[92]Rademacher, H., ‘The Fourier series and the functional equation of the absolute modular invariant J (𝜏)’, Amer. J. Math. 61(1) (1939), 237248.
[93]Rains, E. M. and Sloane, N. J. A., ‘Self-dual codes’, inHandbook of Coding Theory, Vol. I, II (North-Holland, Amsterdam, 1998), 177294.
[94]Scheithauer, N. R., ‘Vertex algebras, Lie algebras, and superstrings’, J. Algebra 200(2) (1998), 363403.
[95]Schwarz, J. H., ‘Dual-resonance theory’, Phys. Rep. 8 (1973), 269335.
[96]Shimura, G., Introduction to The Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan, 11. Kanô Memorial Lectures, 1 (Iwanami Shoten, Tokyo, 1971).
[97]Smith, S. D., ‘On the head characters of the monster simple group’, inFinite Groups – Coming of Age (Montreal, QC, 1982), Contemporary Mathematics, 45 (American Mathematical Society, Providence, RI, 1985), 303313.
[98]Thompson, J. G., ‘Finite groups and modular functions’, Bull. Lond. Math. Soc. 11(3) (1979), 347351.
[99]Thompson, J. G., ‘Some numerology between the Fischer–Griess monster and the elliptic modular function’, Bull. Lond. Math. Soc. 11(3) (1979), 352353.
[100]Volpato, R., ‘On symmetries of N = (4, 4) sigma models on T4’, JHEP 1408 (2014) 094.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

THE MOONSHINE MODULE FOR CONWAY’S GROUP

  • JOHN F. R. DUNCAN (a1) and SANDER MACK-CRANE (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed