Skip to main content
×
×
Home

Upper bounds for packings of spheres of several radii

  • DAVID DE LAAT (a1), FERNANDO MÁRIO DE OLIVEIRA FILHO (a2) and FRANK VALLENTIN (a3)
Abstract

We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We perform explicit computations, obtaining new bounds for packings of spherical caps of two different sizes and for binary sphere packings. We also slightly improve the bounds for the classical problem of packing identical spheres.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Upper bounds for packings of spheres of several radii
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Upper bounds for packings of spheres of several radii
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Upper bounds for packings of spheres of several radii
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
[1] Andrews, G. E., Askey, R. and Roy, R., ‘Special functions’, Encyclopedia of Mathematics and its Applications, 71 (Cambridge University Press, Cambridge, 1999).
[2] Aylward, E., Itani, S. and Parrilo, P. A., ‘Explicit SOS decompositions of univariate polynomial matrices and the Kalman–Yakubovich–Popov lemma’, Proceedings of the 46th IEEE Conference on Decision and Control (2007).
[3] Bachoc, C., Nebe, G., de Oliveira Filho, F. M. and Vallentin, F., ‘Lower bounds for measurable chromatic numbers’, Geom. Funct. Anal. 19 (2009), 645661. arXiv:0801.1059.
[4] Bachoc, C. and Vallentin, F., ‘New upper bounds for kissing numbers from semidefinite programming’, J. Amer. Math. Soc. 21 (2008), 909924. arXiv:math/0608426.
[5] Bochner, S., ‘Hilbert distances and positive definite functions’, Ann. of Math. (3) 42 (1941), 647656.
[6] Bochner, S., Vorlesungen über Fouriersche Integrale (Akademische Verlagsgesellschaft, Leipzig, 1932).
[7] Choi, M. D., Lam, T. Y. and Reznick, B., ‘Real zeros of positive semidefinite forms I’, Math. Z. 171 (1980), 126.
[8] Cohn, H. and Elkies, N. D., ‘New upper bounds on sphere packings I’, Ann. of Math. (2) 157 (2003), 689714. arXiv:math/0110009.
[9] Cohn, H. and Kumar, A., ‘Universally optimal distribution of points on spheres’, J. Amer. Math. Soc. 20 (2007), 99148. arXiv:math/0607446.
[10] Cohn, H. and Kumar, A., ‘Optimality and uniqueness of the Leech lattice among lattices’, Ann. of Math. (2) 170 (2009), 10031050. arXiv:math/0403263.
[11] Courant, R. and Hilbert, D., Methods of Mathematical Physics (Interscience Publishers, 1953).
[12] Delsarte, P., Goethals, J. M. and Seidel, J. J., ‘Spherical codes and designs’, Geom. Dedicata 6 (1977), 363388.
[13] Florian, A., ‘Ausfüllung der Ebene durch Kreise’, Rend. Circ. Mat. Palermo 9 (1960), 300312.
[14] Florian, A., ‘Packing of incongruent circles on the sphere’, Monatsh. Math. 133 (2001), 111129.
[15] Florian, A., ‘Remarks on my paper: packing of incongruent circles on the sphere’, Monatsh. Math. 152 (2007), 3943.
[16] Florian, A. and Heppes, A., ‘Packing circles of two different sizes on the sphere II’, Period. Math. Hungar. 39 (1999), 125127.
[17] Folland, G. B., ‘A course in abstract harmonic analysis’, Studies in Advanced Mathematics (CRC Press, Boca Raton, 1995).
[18] Gijswijt, D. C., ‘Matrix algebras and semidefinite programming techniques for codes’, PhD thesis, University of Amsterdam, 2005, arXiv:1007.0906.
[19] Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M. and Yamashita, M., SDPA (SemiDefinite Programming Algorithm) Users Manual — Version 7.0.5, Research Report B-448, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, 2008, http://sdpa.sourceforge.net.
[20] Grötschel, M., Lovász, L. and Schrijver, A., ‘The ellipsoid method and its consequences in combinatorial optimization’, Combinatorica 1 (1981), 169197.
[21] Hales, T. C., ‘A proof of the Kepler conjecture’, Ann. of Math. (2) 162 (2005), 10651185.
[22] Heppes, A., ‘Some densest two-size disc packings in the plane’, Discrete Comput. Geom. 30 (2003), 241262.
[23] Heppes, A. and Kertész, G., ‘Packing circles of two different sizes on the sphere: intuitive geometry’, Bolyai Soc. Math. Stud. 6 (1997), 357365.
[24] Higham, N. J., ‘A survey of condition number estimation for triangular matrices’, SIAM Rev. 29 (1987), 575595.
[25] Higham, N. J., ‘Upper bounds for the condition number of a triangular matrix’, Numerical Analysis Report No. 86, University of Manchester, Manchester, 1983.
[26] Hopkins, A. B., Jiao, Y., Stillinger, F. H. and Torquato, S., ‘Phase diagram and structural diversity of the densest binary sphere packings’, Phys. Rev. Lett. 107 125501 (2011), 5pp. arXiv:1108.2210.
[27] Hopkins, A. B., Stillinger, F. H. and Torquato, S., ‘Densest binary sphere packings’, Phys. Rev. E 85 021130 (2012), 19pp. arXiv:1111.4917.
[28] Laurent, M., ‘Sums of squares, moment matrices and optimization over polynomials’, inEmerging Applications of Algebraic Geometry, (eds Putinar, M. and Sullivant, S.), IMA Volumes in Mathematics and its Applications, 149 (Springer, New York, 2009), 157270.
[29] Levenshtein, V. I., ‘Universal bounds for codes and designs’, inHandbook of Coding Theory, Vol. I (North-Holland, Amsterdam, 1998), 499648.
[30] Löfberg, J., ‘Pre- and post-processing sums-of-squares programs in practice’, IEEE Trans. Automat. Control 54 (2009), 10071011.
[31] Löfberg, J., ‘Strictly feasible sums-of-squares solutions, post in YALMIP Wiki’, 2011.
[32] Masnick, B. and Wolf, J., ‘On linear unequal error protection codes’, IEEE Trans. Inform. Theory 13 (1967), 600607.
[33] Mittelmann, H. D. and Vallentin, F., ‘High accuracy semidefinite programming bounds for kissing numbers’, Experiment. Math. 19 (2010), 174178. arXiv:0902.1105.
[34] de Oliveira Filho, F. M., ‘SDPSL: A semidefinite programming specification library’,http://www.ime.usp.br/∼fmario/sdpsl.html.
[35] Rogers, C. A., ‘The packing of equal spheres’, Proc. London Math. Soc. 8 (1958), 609620.
[36] Schoenberg, I. J., ‘Positive definite functions on spheres’, Duke Math. J. 9 (1942), 96108.
[37] Stein, W. A. et al. , ‘Sage mathematics software (version 4.8), the sage development team’, 2012, http://www.sagemath.org.
[38] Szegö, G., Orthogonal Polynomials, American Mathematical Society Colloquium Publications, XXIII (American Mathematical Society, Providence, 1975).
[39] Terras, A., Harmonic Analysis on Symmetric Spaces and Applications I (Springer, Berlin, Heidelberg, New York, 1985).
[40] Torquato, S., Random Heterogeneous Materials, Microstructure and Macroscopic Properties (Springer, New York, 2002).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Sigma
  • ISSN: -
  • EISSN: 2050-5094
  • URL: /core/journals/forum-of-mathematics-sigma
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Type Description Title
UNKNOWN
Supplementary materials

De Laat Supplementary Material
Supplementary Material

 Unknown (263 KB)
263 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed