Skip to main content Accessibility help
×
Home

VANISHING IN STABLE MOTIVIC HOMOTOPY SHEAVES

  • KYLE ORMSBY (a1), OLIVER RÖNDIGS (a2) and PAUL ARNE ØSTVÆR (a3)

Abstract

We determine systematic vanishing regions for the bigraded homotopy sheaves of the motivic sphere spectrum over a field of characteristic different from two.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      VANISHING IN STABLE MOTIVIC HOMOTOPY SHEAVES
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      VANISHING IN STABLE MOTIVIC HOMOTOPY SHEAVES
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      VANISHING IN STABLE MOTIVIC HOMOTOPY SHEAVES
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
[1] Andrews, M. and Miller, H., ‘Inverting the Hopf map’, J. Topol. 10(4) (2017), 11451168.
[2] Asok, A. and Fasel, J., ‘Algebraic vector bundles on spheres’, J. Topol. 7(3) (2014), 894926.
[3] Bachmann, T., ‘Motivic and real etale stable homotopy theory’, Preprint, 2017, arXiv:1608.08855v2.
[4] Dugger, D. and Isaksen, D. C., ‘The motivic Adams spectral sequence’, Geom. Topol. 14(2) (2010), 9671014.
[5] Dugger, D. and Isaksen, D. C., ‘ $\mathbb{Z}/2$ -equivariant and $\mathbb{R}$ -motivic stable stems’, Preprint, 2016, arXiv:1603.09305.
[6] Dugger, D. and Isaksen, D. C., ‘Low-dimensional Milnor–Witt stems over ℝ’, Ann. K-Theory 2(2) (2017), 175210.
[7] Gheorghe, B. and Isaksen, D. C., ‘The structure of motivic homotopy groups’, Bol. Soc. Mat. Mexicana (3) 23(1) (2017), 389397.
[8] Guillou, B. J. and Isaksen, D. C., ‘The 𝜂-inverted ℝ-motivic sphere’, Algebr. Geom. Topol. 16(5) (2016), 30053027.
[9] Heller, J. and Ormsby, K., ‘Galois equivariance and stable motivic homotopy theory’, Trans. Amer. Math. Soc. 368(11) (2016), 80478077.
[10] Heller, J. and Ormsby, K., ‘The stable Galois correspondence for real closed fields’, Preprint, 2017, arXiv:1701.09099.
[11] Hornbostel, J. and Yagunov, S., ‘Rigidity for henselian local rings and A1 -representable theories’, Math. Z. 255(2) (2007), 437449.
[12] Hoyois, M., ‘From algebraic cobordism to motivic cohomology’, J. Reine Angew. Math. 702 (2015), 173226.
[13] Hu, P., Kriz, I. and Ormsby, K., ‘Convergence of the motivic Adams spectral sequence’, J. K-Theory 7(3) (2011), 573596.
[14] Hu, P., Kriz, I. and Ormsby, K., ‘Remarks on motivic homotopy theory over algebraically closed fields’, J. K-Theory 7(1) (2011), 5589.
[15] Levine, M., ‘Convergence of Voevodsky’s slice tower’, Doc. Math. 18 (2013), 907941.
[16] Merkurjev, A. S. and Suslin, A. A., ‘The group K 3 for a field’, Izv. Akad. Nauk SSSR Ser. Mat. 54(3) (1990), 522545.
[17] Morel, F., ‘Suite spectrale d’Adams et invariants cohomologiques des formes quadratiques’, C. R. Acad. Sci. Paris Sér. I Math. 328(11) (1999), 963968.
[18] Morel, F., ‘On the motivic 𝜋0 of the sphere spectrum’, inAxiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II Math. Phys. Chem., 131 (Kluwer Academic Publishers, Dordrecht, 2004), 219260.
[19] Morel, F., ‘The stable A1 -connectivity theorems’, K-Theory 35(1–2) (2005), 168.
[20] Morel, F., A1 -Algebraic Topology over a Field, Lecture Notes in Mathematics, 2052 (Springer, Heidelberg, 2012).
[21] Novikov, S. P., ‘Methods of algebraic topology from the point of view of cobordism theory’, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855951.
[22] Ormsby, K., Computations in stable motivic homotopy theory. ProQuest LLC, Ann Arbor, MI, PhD Thesis, University of Michigan, 2010.
[23] Ormsby, K. M. and Østvær, P. A., ‘Stable motivic 𝜋1 of low-dimensional fields’, Adv. Math. 265 (2014), 97131.
[24] Ravenel, D. C., Complex Cobordism and Stable Homotopy Groups of Spheres, Pure and Applied Mathematics, 121 (Academic Press, Inc., 1986).
[25] Röndigs, O., ‘On the $\unicode[STIX]{x1D702}$ -inverted sphere’. Proceedings of the International Colloquium on $K$ -Theory, TIFR, to appear, Preprint, 2016, arXiv:1602.08798.
[26] Röndigs, O., Spitzweck, M. and Østvær, P. A., ‘The first stable homotopy groups of motivic spheres’, Preprint, 2016, arXiv:1604.00365.
[27] Scheiderer, C., Real and Étale Cohomology, Lecture Notes in Mathematics, 1588 (Springer, Berlin, 1994).
[28] Serre, J.-P., Galois Cohomology, Springer Monographs in Mathematics (Springer, Berlin, 2002).
[29] Suslin, A. and Voevodsky, V., ‘Bloch–Kato conjecture and motivic cohomology with finite coefficients’, inThe Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548 (Kluwer Academic Publishers, Dordrecht, 2000), 117189.
[30] Suslin, A. and Voevodsky, V., ‘Singular homology of abstract algebraic varieties’, Invent. Math. 123(1) (1996), 6194.
[31] Toda, H., Composition Methods in Homotopy Groups of Spheres, Annals of Mathematics Studies, 49 (Princeton University Press, Princeton, N.J., 1962).
[32] Voevodsky, V., ‘ A 1 -homotopy theory’, inProceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), Extra Vol. I (1998), 579604.
[33] Voevodsky, V., ‘Open problems in the motivic stable homotopy theory. I’, inMotives, Polylogarithms and Hodge Theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., 3 (International Press, Somerville, MA, 2002), 334.
[34] Voevodsky, V., ‘Motivic cohomology with Z/2-coefficients’, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59104.
[35] Voevodsky, V., ‘On motivic cohomology with Z/l-coefficients’, Ann. of Math. (2) 174(1) (2011), 401438.
[36] Wilson, G. M., ‘The $\unicode[STIX]{x1D702}$ -inverted motivic sphere over the rationals’, Algebr. Geom. Topol. In preparation, arXiv:1708.06523.
[37] Wilson, G. M. and Østvær, P. A., ‘Two-complete stable motivic stems over finite fields’, Algebr. Geom. Topol. 17(2) (2017), 10591104.
[38] Zahler, R., ‘The Adams–Novikov spectral sequence for the spheres’, Ann. of Math. (2) 96 (1972), 480504.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed