Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-17T17:28:19.985Z Has data issue: false hasContentIssue false

Verlinde formulae on complex surfaces: K-theoretic invariants

Published online by Cambridge University Press:  11 January 2021

L. Göttsche
Affiliation:
Mathematics Group, International Centre for Theoretical Physics, Strada Costiera 11, 34100, Trieste, Italy; E-mail: gottsche@ictp.it.
M. Kool
Affiliation:
Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA, Utrecht, The Netherlands; E-mail: m.kool1@uu.nl.
R. A. Williams
Affiliation:
University of the Bahamas, Department of Mathematics, University Drive, Nassau, The Bahamas; E-mail: runako.williams@ub.edu.bs.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We conjecture a Verlinde type formula for the moduli space of Higgs sheaves on a surface with a holomorphic 2-form. The conjecture specializes to a Verlinde formula for the moduli space of sheaves. Our formula interpolates between K-theoretic Donaldson invariants studied by Göttsche and Nakajima-Yoshioka and K-theoretic Vafa-Witten invariants introduced by Thomas and also studied by Göttsche and Kool. We verify our conjectures in many examples (for example, on K3 surfaces).

Type
Algebraic and Complex Geometry
Creative Commons
Creative Common License - CCCreative Common License - BY
Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press

References

Andersen, J. E., Gukov, S., and Pei, Du, ‘The Verlinde formula for Higgs bundles’, arXiv:1608.01761.Google Scholar
Beauville, A., ‘Fibrés de rang 2 sur les courbes, fibré determinant et fonctions thêta’, Bull. Soc. Math. France 116 (1988), 431448.CrossRefGoogle Scholar
Beauville, A. and Laszlo, Y., ‘Conformal blocks and generalized theta functions’, Comm. Math. Phys. 164 (1994), 385419.CrossRefGoogle Scholar
Behrend, K., ‘Donaldson-Thomas type invariants via microlocal geometry’, Annals of Math. 170 (2009), 13071338.CrossRefGoogle Scholar
Bertram, A. and Szenes, A., ‘Hilbert polynomials of moduli spaces of rank 2 vector bundles II’, Topol. 32 (1993), 599609.CrossRefGoogle Scholar
Bott, R., ‘On E. Verlinde’s formula in the context of stable bundles’, Int. J. Mod. Phys . A6 (1991), 28472858.CrossRefGoogle Scholar
Daskalopoulos, G. and Wentworth, R., ‘Local degeneration of the moduli space of vector bundles and factorization of rank two theta functions. I’, Math. Ann. 297 (1993), 417466.CrossRefGoogle Scholar
Donaldson, S., ‘Gluing techniques in the cohomology of moduli spaces’, in: Topological Methods in Modern Mathematics: A Symposium in Honor of John Milnor’s Sixtieth Birthday (Publish or Perish, 1993).Google Scholar
Drézet, J. M. and Narasimhan, M. S., ‘Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques’, Invent. Math. 97 (1989), 5394.CrossRefGoogle Scholar
Ellingsrud, G., Göttsche, L., and Lehn, M., ‘On the cobordism class of the Hilbert scheme of a surface’, Jour. Alg. Geom. 10 (2001), 81100.Google Scholar
Faltings, G., ‘A proof of the Verlinde formula’, J. Alg. Geom. 3 (1994), 347374.Google Scholar
Fantechi, B. and Göttsche, L., ‘Riemann-Roch theorems and elliptic genus for virtually smooth schemes’, Geom. Topol. 14 (2010), 83115.CrossRefGoogle Scholar
Gholampour, A., Sheshmani, A., and Yau, S.-T., ‘Nested Hilbert schemes on surfaces: virtual fundamental class’, Adv. Math. 365 (2020), 107046.CrossRefGoogle Scholar
Gholampour, A., Sheshmani, A., and Yau, S.-T., ‘Localized Donaldson-Thomas theory of surfaces’, Amer. Jour. Math. 142 (2020), 405442.CrossRefGoogle Scholar
Gholampour, A. and Thomas, R. P., ‘Degeneracy loci, virtual cycles and nested Hilbert schemes I’, Tunisian Jour. Math. 2 (2020), 633665.CrossRefGoogle Scholar
Gholampour, A. and Thomas, R. P., ‘Degeneracy loci, virtual cycles and nested Hilbert schemes II’, to appear in Compos. Math ., arXiv:1902.04128.Google Scholar
Göttsche, L., ‘Verlinde-type formulas for rational surfaces’, JEMS 22 (2020), 151212.CrossRefGoogle Scholar
Göttsche, L., ‘Refined Verlinde formulas for Hilbert schemes of points and moduli of sheaves on K3 surfaces’, arXiv:1903.03874.Google Scholar
Göttsche, L. and Kool, M., ‘Virtual refinements of the Vafa-Witten formula’, Comm. Math. Phys. 376 (2020), 149.CrossRefGoogle Scholar
Göttsche, L. and Kool, M., ‘A rank 2 Dijkgraaf-Moore-Verlinde-Verlinde formula’, Comm. Numb. Theor. and Phys. 13 (2019), 165201.CrossRefGoogle Scholar
Göttsche, L. and Kool, M., ‘Refined $\mathrm{SU}(3)$Vafa-Witten invariants and modularity’, Pure and Appl. Math. Quart. 14 (2018), 467513.CrossRefGoogle Scholar
Göttsche, L., Nakajima, H., and Yoshioka, K., ‘Instanton counting and Donaldson invariants’, J. Diff. Geom. 80 (2008), 343390.CrossRefGoogle Scholar
Göttsche, L., Nakajima, H., and Yoshioka, K., ‘K-theoretic Donaldson invariants via instanton counting’, Pure Appl. Math. Quart. 5 (2009), 10291111.CrossRefGoogle Scholar
Göttsche, L., Nakajima, H., and Yoshioka, K., ‘Donaldson = Seiberg-Witten from Mochizuki’s formula and instanton counting’, Publ. Res. Inst. Math. Sci. 47 (2011), 307359.CrossRefGoogle Scholar
Göttsche, L. and Soergel, W., ‘Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces’, Math. Ann. 296 (1993), 235245.CrossRefGoogle Scholar
Göttsche, L. and Yuan, Y., ‘Generating functions for $K$-theoretic Donaldson invariants and Le Potier’s strange duality’, J. Alg. Geom . 28 (2019), 4398. 223 (1996) 247–260.CrossRefGoogle Scholar
Graber, T. and Pandharipande, R., ‘Localization of virtual classes’, Invent. Math. 135 (1999), 487518.CrossRefGoogle Scholar
Gukov, S. and Pei, Du, ‘Equivariant Verlinde formula from fivebranes and vortices’, Comm. Math. Phys. 355 (2017), 150.CrossRefGoogle Scholar
Halpern-Leistner, D., ‘The equivariant Verlinde formula on the moduli of Higgs bundles’, arXiv:1608.01754.Google Scholar
Huybrechts, D. and Lehn, M., The Geometry of Moduli Spaces of Sheaves (Cambridge University Press, 2010).CrossRefGoogle Scholar
Jiang, Y. and Kool, M., ‘Twisted sheaves and Vafa-Witten theory’, arXiv:2006.10368.Google Scholar
Kirwan, F., ‘The cohomology rings of moduli spaces of bundles over Riemann surfaces’, J. Amer. Math. Soc. 5 (1992), 853906.CrossRefGoogle Scholar
Kynev, V., ‘An example of a simply connected surface of general type for which the local Torelli theorem does not hold’, C. R. Acad. Bulgare Sci. 30 (1977), 323325.Google Scholar
Laarakker, T., ‘Monopole contributions to refined Vafa-Witten invariants’, to appear in Geom. Topol., arXiv:1810.00385.Google Scholar
Mochizuki, T., Donaldson Type Invariants for Algebraic Surfaces, Lecture Notes in Math. 1972 (Springer-Verlag, Berlin, 2009).Google Scholar
Morgan, J. W., The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Math. Notes 44 (Princeton Univ. Press, 1996).Google Scholar
Nekrasov, N. and Okounkov, A., ‘Membranes and sheaves’, Alg. Geom. 3 (2016), 320369.CrossRefGoogle Scholar
Ramadas, T. R., ‘Factorisation of generalised theta functions II: The Verlinde formula’, Topol. 35 (1996), 641654.CrossRefGoogle Scholar
Szenes, A., ‘Hilbert polynomials of moduli spaces of rank 2 vector bundles I’, Topol. 32 (1993), 587597.CrossRefGoogle Scholar
Tanaka, Y. and Thomas, R. P., ‘Vafa-Witten invariants for projective surfaces I: stable case’, Jour. Alg. Geom . (2019) doi.org/10.1090/jag/738.CrossRefGoogle Scholar
Thaddeus, M., ‘Stable pairs, linear systems and the Verlinde formula’, Invent. Math. 117 (1994), 317353.CrossRefGoogle Scholar
Thomas, R. P., ‘Equivariant K-theory and refined Vafa-Witten invariants’, to appear in Comm. Math. Phys., arXiv:1810.00078.Google Scholar
Vafa, C. and Witten, E., ‘A strong coupling test of $S$-duality’, Nucl. Phys. B 431 (1994), 377.CrossRefGoogle Scholar
Verlinde, E., ‘Fusion rules and modular transformations in $2d$conformal field theory’, Nucl. Phys. B 300 (1988), 360376.CrossRefGoogle Scholar
Zagier, D., ‘Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula’, in Proc. of the Hirzebruch 65 Conf. on Alg. Geom., Israel Math. Conf. Proc . 9 . (Ramat Gan, 1996), 455462.Google Scholar
Zagier, D., ‘On the cohomology of moduli spaces of rank two vector bundles over curves’, in The Moduli Space of Curves, Progress in Math. 129 (Birkhäuser, 1995), 533563.CrossRefGoogle Scholar