Skip to main content
×
×
Home

ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE

  • FRANCIS BROWN (a1)
Abstract

This paper draws connections between the double shuffle equations and structure of associators; Hain and Matsumoto’s universal mixed elliptic motives; and the Rankin–Selberg method for modular forms for $\text{SL}_{2}(\mathbb{Z})$ . We write down explicit formulae for zeta elements $\unicode[STIX]{x1D70E}_{2n-1}$ (generators of the Tannaka Lie algebra of the category of mixed Tate motives over $\mathbb{Z}$ ) in depths up to four, give applications to the Broadhurst–Kreimer conjecture, and solve the double shuffle equations for multiple zeta values in depths two and three.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
[1] Arbesfeld N. and Enriquez B., ‘On a lower central series filtration of the Grothendieck–Teichmüller Lie algebra grt 1 ’, Mosc. Math. J. 15(2) (2015), 205256, 403.
[2] Belyi G. V., ‘On Galois extensions of a maximal cyclotomic field’, Math. USSR Izvestiya 14 (1980), 247256.
[3] Brown F., Anatomy of an associator, notes (see also http://www.ihes.fr/∼brown/AnatomyBeamer.pdf).
[4] Brown F., ‘Mixed Tate motives over ℤ’, Ann. of Math. (2) 175(1) (2012), 949976.
[5] Brown F., ‘On the decomposition of motivic multiple zeta values’, inGalois–Teichmüller Theory and Arithmetic Geometry, Advanced Studies in Pure Mathematics, 63 (Math. Soc. Japan, Tokyo, 2012), 3158.
[6] Brown F., ‘Motivic periods and the projective line minus 3 points’, in Proceedings of the ICM, 2014, arXiv:1407.5165.
[7] Brown F., ‘Depth-graded motivic multiple zeta values’, Preprint, 2013, arXiv:1301.3053.
[8] Brown F., ‘Multiple modular values for $\text{SL}_{2}(\mathbb{Z})$ ’, Preprint, 2014, arXiv:1407.5167.
[9] Broadhurst D. and Kreimer D., ‘Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops’, Phys. Lett. B 393(3–4) (1997), 403412.
[10] Blümlein J., Broadhurst D. J. and Vermaseren J. A. M., ‘The multiple zeta value data mine’, Comput. Phys. Comm. 181 (2010), 582625.
[11] Calaque D., Enriquez B. and Etingof P., ‘Universal KZB equations: the elliptic case’, inAlgebra, Arithmetic, and Geometry: in honor of Yu. I. Manin. Vol. I, Progress in Mathematics, 269 (Birkhäuser Boston, Inc., Boston, MA, 2009), 165266.
[12] Deligne P. and Goncharov A. B., ‘Groupes fondamentaux motiviques de Tate mixte’, Ann. Sci. Éc. Norm. Supér. (4) 38 (2005), 156.
[13] Drinfeld V., ‘On quasi-triangular quasi-Hopf algebras and some group closely related with Gal(/ℚ)’, Algebra i Analiz 2(4) (1990), 149181.
[14] Ecalle J., ‘ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan’, J. Théor. Nombres Bordeaux 15(2) (2003), 411478.
[15] Ecalle J., ‘Multizetas, perinomal numbers, arithmetical dimorphy, and ARI/GARI’, Ann. Fac. Sci. Toulouse Math. (6) 13(4) (2004), 683708.
[16] Enriques B. and Lochak P., ‘Homology of depth-graded motivic Lie algebras and koszulity’, Preprint, 2014, arXiv:1407.4060.
[17] Furusho H., ‘Double shuffle relation for associators’, Ann. of Math. (2) 174(1) (2011), 341360.
[18] Gangl H., Kaneko M. and Zagier D., ‘Double zeta values and modular forms’, inAutomorphic Forms and Zeta Functions (World Scientific Publishing, Hackensack, NJ, 2006), 71106.
[19] Glanois C., ‘Periods of the motivic fundamental groupoid of $\mathbb{P}^{1}\backslash \{0,\unicode[STIX]{x1D707}_{N},\infty \}$ , PhD Thesis, Université Pierre et Marie Curie, 2016.
[20] Goncharov A. B., ‘The dihedral Lie algebras and Galois symmetries of 𝜋1 (l)(ℙ1 - ({0, }∪𝜇 N ))’, Duke Math. J. 110(3) (2001), 397487. (English summary).
[21] Goncharov A. B., ‘Multiple polylogarithms, cyclotomy and modular complexes’, Math. Res. Lett. 5(4) (1998), 497516.
[22] Grothendieck A., ‘Esquisse d’un programme’, 1984. http://matematicas.unex.es/∼navarro/res/esquissefr.pdf.
[23] Hain R., ‘Notes on the Universal Elliptic KZB Equation’, Preprint, 2013, arXiv:1309.0580.
[24] Hain R., ‘The Hodge–de Rham theory of modular groups’, inRecent Advances in Hodge Theory, London Mathematical Society Lecture Note Series, 427 (Cambridge University Press, Cambridge, 2016), 422514.
[25] Hain R. and Matsumoto M., ‘Universal mixed elliptic motives’, Preprint, 2015,arXiv:1512.03975.
[26] Ihara Y. and Takao N., Seminar talk (May 1993).
[27] Kohnen W. and Zagier D., ‘Modular forms with rational periods’, inModular Forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res. (Horwood, Chichester, 1984), 197249.
[28] Levin A. and Racinet G., ‘Towards multiple elliptic polylogarithms’, Preprint, 2007,arXiv:math/0703237.
[29] Manin Y., ‘Iterated Shimura integrals’, Mosc. Math. J. 5 (2005), 869881.
[30] Manin Y., ‘Iterated integrals of modular forms and noncommutative modular symbols’, inAlgebraic Geometry and Number Theory, Progress in Mathematics, 253 (Birkhäuser Boston, Boston, MA, 2006), 565597.
[31] McCallum W. and Sharifi R., ‘A cup product in the Galois cohomology of number fields’, Duke Math. J. 120(2) (2003), 269310.
[32] Nakamura H., ‘Tangential base points and Eisenstein power series’, inAspects of Galois Theory (Gainesville, FL, 1996), London Mathematical Society Lecture Note Series, 256 (Cambridge University Press, Cambridge, 1999), 202217.
[33] Panzer E., ‘The parity theorem for multiple polylogarithms’, J. Number Theory 172 (2017), 93113.
[34] Pollack A., ‘Relations between derivations arising from modular forms’, Undergraduate Thesis, Duke University, 2009.
[35] Racinet G., ‘Doubles mélanges des polylogarithmes multiples aux racines de l’unité’, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 185231.
[36] Tsumura H., ‘Combinatorial relations for Euler–Zagier sums’, Acta Arith. 111 (2004), 2742.
[37] Tsunogai H., ‘On some derivations of Lie algebras related to Galois representations’, Publ. Res. Inst. Math. Sci. 31 (1995), 113134.
[38] Zagier D., ‘Periods of modular forms, traces of Hecke operators, and multiple zeta values’, RIMS Kokyuroku 843 (1993), 162170.
[39] Zagier D. B., ‘Evaluation of the multiple zeta values 𝜁(2, …, 2, 3, 2, …, 2)’, Ann. of Math. (2) 175(2) (2012), 9771000.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Sigma
  • ISSN: -
  • EISSN: 2050-5094
  • URL: /core/journals/forum-of-mathematics-sigma
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 208 *
Loading metrics...

Abstract views

Total abstract views: 319 *
Loading metrics...

* Views captured on Cambridge Core between 5th January 2017 - 19th February 2018. This data will be updated every 24 hours.