Hostname: page-component-7d684dbfc8-kpkbf Total loading time: 0 Render date: 2023-09-30T17:21:19.979Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Geographical distribution, tree density and fruit production of Tamarindus indica L. (Fabaceae) across three ecological regions in Benin

Published online by Cambridge University Press:  28 March 2011

Get access


Introduction. There has been increasing interest in the domestication potential of indigenous fruit trees. Nevertheless, our understanding of how these species’ abundance and yield of fruit is altered by ecological conditions, which is critical to foresee realistic sustainable management plans, is limited. Materials and methods. We used local ecological knowledge, presence / absence data and quantitative methods to examine the effect of ecological conditions on the distribution, abundance and yields of tamarind trees (T. indica) across three ecological regions in Benin, West Africa. Results and discussion. Rural communities’ knowledge on the species’ ecological range was congruent with scientific findings. The natural distribution of tamarind individuals was limited to the Sudanian and the Sudano-Guinean regions and their density declined with increasing moisture, being highest (2 trees·km-2) in the Sudanian region and lowest in the Guineo-Congolian region (scarce). On the other hand, fruit and pulp mass and number of seeds per fruit varied significantly, being higher in the Guineo-Congolian wetter region. However, no significant variation occurred among ecological regions for estimated overall fruit yields per tree. This might indicate that tamarind trees tend to invest in a small number of very large fruits under wetter conditions and a very large number of small fruits under dryer conditions. Conclusion. The results showed that semi-arid lands would best suit T. indica domestication. Nevertheless, its productivity could be higher under wetter conditions. Because of its affinity for gallery forests, we recommend thorough studies on its capacity to survive the increasing drought in its current ecological range.

Original article
© 2011 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Leakey, R.R.B., Simons, A.J., The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty, Agrofor. Syst. 38 (1998) 165176. CrossRefGoogle Scholar
Kouyaté, A.M., Van Damme, P., Caractères morphologiques de Detarium microcarpum Guill. et Perr. au sud du Mali, Fruits 57 (2002) 231238. CrossRefGoogle Scholar
Atangana, A.R., Ukafor, V., Anegbeh, P., Asaah, E., Tchoundjeu, Z., Fondoun, J-M., Ndoumbe, M., Leakey, R.R.B., Domestication of Irvingia gabonensis: 2. The selection of multiple traits for potential cultivars from Cameroon and Nigeria, Agrofor. Syst. 55 (2002) 221229. CrossRefGoogle Scholar
Leakey, R.R.B., Shackleton, S., du Plessis, P., Domestication potential of marula (Sclerocarya birrea subsp. caffra) in South Africa and Namibia: 1. Phenotypic variation in fruit traits, Agrofor. Syst. 64 (2005) 2535. CrossRefGoogle Scholar
Bouvet, J-M, Kelly, B., Sanou, H., Allal, F., Comparison of marker- and pedigree-based methods for estimating heritability in an agroforestry population of Vitellaria paradoxa C.F. Gaertn. (shea tree), Genet. Resour. Crop Evol. 55 (2008) 12911301. CrossRefGoogle Scholar
Ekué, M.R.M., Gailing, O., Finkeldey, R., Transferability of Simple Sequence Repeat (SSR) Markers developed in Litchi chinensis to Blighia sapida (Sapindaceae), Plant. Mol. Biol. Rep. 27 (2009) 570574. CrossRefGoogle Scholar
Leakey, R., Fuller, S., Treloar, T., Stevenson, L., Hunter, D., Nevenimo, T., Binifa, J., Moxon, J., Characterization of tree-to-tree variation in morphological, nutritional and medicinal properties of Canarium indicum nuts, Agrofor. Syst. 73 (2008) 7787. CrossRefGoogle Scholar
Assogbadjo, A.E., Sinsin, B., Codjia, J.T.C., Van Damme, P., Ecological diversity and pulp, seed and kernel production of the baobab (Adansonia digitata) in Benin, Belg. J. Bot. 138 (1) (2005) 4756. Google Scholar
Schlichting C.D., Pigliucci M., Phenotypic evolution: a reaction norm perspective, Sinauer Assoc., Sunderland, Mass., U.S.A., 1998.
Gaoue, O.G., Ticktin, T., Impacts of bark and foliage harvest on Khaya senegalensis (Meliaceae) reproductive performance in Benin, J. Appl. Ecol. 28 (2008) 3440. Google Scholar
Diggle, P.J., Robust density estimation using distance methods, Biometrika 62 (1) (1975) 3948. CrossRefGoogle Scholar
Young L.J., Young, H., Statistical ecology: a population perspective, Kluwer Acad. Publ., Boston, U.S.A., 1998.
Diggle, P.J., Besag, J., Gleaves, J.T., Statistical analysis of spatial point by means of distance methods, Biometrics 32 (1976) 659667. CrossRefGoogle Scholar
Gaoue, O.G., Ticktin, T., Fulani knowledge of the ecological impacts of Khaya senegalensis (Meliaceae) foliage harvest in Benin and its implications for sustainable harvest, Econ. Bot. 63 (3) (2009) 256270. CrossRefGoogle Scholar
Maundu P.M., Ngugi G.W., Kabuye C.H.S., Traditional food plants of Kenya, Natl. Mus. Kenya, Nairobi, Kenya, 1999.
Eyog Matig O., Gaoué O.G., Dossou B., Réseaux "Espèces Ligneuses Alimentaire", C. R. Prem. Réun. Réseau, 11–13 déc. 2000, CNSF, Ouagadougou, Burkina Faso, Inst. Int. Ressour. Phytogénét., 2002.
El-Siddig K., Gunasena H.P.M, Prasad B.A. Pushpakumara D.K.N.G., Ramana K.V.R., Vijayanand P., Williams J.T., Tamarind, Tamarindus indica L., Southampt., Cent. Underutil. Crops, Southampt., U.K., 2006.
Bowe, C., Haq, N., Quantifying the global environmental niche of an underutilized tropical fruit tree (Tamarindus indica) using herbarium records, Agric. Ecosyst. Environ. 139 (1–2) (2010) 5158. CrossRefGoogle Scholar
Soloviev, P., Niang, T.D., Gaye, A., Totte, A., Variabilité des caractères physico-chimiques des fruits de trois espèces ligneuses de cueillette récoltés au Sénégal : Adansonia digitata, Balanites aegyptiaca et Tamarindus indica , Fruits 59 (2004) 109119. CrossRefGoogle Scholar
Diallo B.O., Biologie de la reproduction et évaluation de la diversité génétique chez une légumineuse : Tamarindus indica L. (Caesalpinioideae), Univ. Montp. II, Sci. Tech. Languedoc, Thèse, Montp., France, 2001.
Diallo, B.O., Joly, H.I., Mckey, D., Hossaert-Mckey, M., Chevallier, M.H., Genetic diversity of Tamarindus indica populations: Any clues on the origin from its current distribution?, Afr. J. Biotechnol. 6 (7) (2007) 853860. Google Scholar
Diallo, B.O., Mckey, D., Chevallier, M-H., Joly, H.I., Hossaert-Mckey, M., Breeding system and pollination biology of the semi-domesticated fruit tree, Tamarindus indica L. (Leguminosae: Caesalpinioideae): Implications for fruit production, selective breeding, and conservation of genetic resources, Afr. J. Biotechnol. 7 (22) (2008) 40684075. Google Scholar
Diallo, B.O., Joly, H.I., McKey, D., Hossaert-McKey,, M., Chevallier, M.H., Variation des caractères biométriques des graines et des plantules de neuf provenances de Tamarindus indica L. (Caesalpinioideae), Fruits 65 (3) (2010) 153167. CrossRefGoogle Scholar
Fandohan, B., Assogbadjo, A.E., Glèlè Kakaï, R., Sinsin, B., Van Damme, P., Impact of habitat type on the conservation status of tamarind (Tamarindus indica L.) populations in the W National Park of Benin, Fruits 65 (1) (2010) 1119. CrossRefGoogle Scholar
White, F., The vegetation of Africa, UNESCO Paris, France, Nat. Resour. Res. 20 (1983) 1356. Google Scholar
Anon., Troisième recensement général de la population et de l’habitation (RGPH-3), Résultats définitifs : Caractéristiques générales de la population, Inst. Natl. Stat. Appl. Econ. (INSAE), Cotonou, Bénin, 2003.
Adomou, C.A, Sinsin, B., van der Maesen, L.J.G., Phytosociological and chorological approaches to phytogeography: a meso-scale study in Benin, Syst. Geogr. Plants 76 (2006) 155178. Google Scholar
Grais, R.F., Coulombier, D., Ampuero, J., Lucas, M.E.S., Barretto, A.T., Jacquier, G., Diaz, F., Balandine, S., Mahoudeau, C., Brown, V., Are rapid population estimates accurate? A field trial of two different assessment methods, Disasters 30 (3) (2006) 364376. CrossRefGoogle ScholarPubMed
Diggle P.J., Statistical analysis of spatial point processes, Second ed., Arnold, Lond., U.K., 2003.
Lamien N., Tigabu M., Guinko S., Oden P.C., Variations in dendrometric and fruiting characters of Vitellaria paradoxa populations and multivariate models for estimation of fruit yield, Agrofor. Syst. (2007) DOI 10.1007/s10457-006-9013-x.
Leakey, R.R.B., Fondoun, J.-M., Atangana, A., Tchoundjeu, Z., Quantitative descriptors of variation in the fruits and seeds of Irvingia gabonensis , Agrofor. Syst. 50 (2000) 4758. CrossRefGoogle Scholar
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., The WorldClim interpolated global terrestrial climate surfaces, Vers. 1.3.,, 2004.
Kouyaté A.M., Aspects ethnobotaniques et étude de la variabilité morphologique, biochimique et phénologique de Detarium microcarpum Guill et Perr. au Mali, Univ. Ghent, Thèse, Ghent, Belg., 2005.
Ryan T.A., Joiner B.L., Normal probability plots and tests for normality: technical report, Univ. Park, Stat. Dep., Pa. State Univ., State Coll., Pennsylvania, U.S.A., 1976.
Aubréville A., Flore forestière soudano- guinéenne, AOF-Cameroun-AEF, Soc. Ed. , Marit. Colon., Paris, France, 1950.
Jama, B.A., Mohamed, A.M., Mulatya, J., Njui, A.N., Comparing the “Big Five”: A frame-work for the sustainable management of indigenous fruit trees in the drylands of East and Central Africa, Ecol. Indic. 8 (2) (2008) 170179. CrossRefGoogle Scholar
Maley, J., Brenac, P., Vegetation dynamics, palaeoenvironments and climatic changes in the forests of West Cameroon during the last 28,000 years, Rev. Palaeobot. Palynol. 99 (1998) 157188. CrossRefGoogle Scholar
Salzmann, U., Waller, M., The Holocene vegetational history of the Nigerian Sahel based on multiple pollen profiles, Rev. Palaeobot. Palynol. 100 (1998) 3972. CrossRefGoogle Scholar
Salzmann, U., Are savannas degraded forests? A Holocene pollen record from the Sudanian zone of NE Nigeria, Veg. Hist. Archaeobot. 9 (2000) 115. CrossRefGoogle Scholar
Salzmann, U., Hoelzmann, P., Morczineck, I., Late Quaternary climate and vegetation of the Sudanian zone of NE Nigeria, Quat. Res. 58 (2002) 7383. CrossRefGoogle Scholar
Salzmann, U., Hoelzmann, P., The Dahomey gap: An abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene, Holocene 15 (2) (2005) 190199. CrossRefGoogle Scholar
Collinet F., Essai de regroupement des principales espèces structurantes d’une forêt dense humide d’après l’analyse de leur répartition spatiale (Forêt de Paracou-Guyane), Lab. Biom., Génét. Biol. Popul., UMR CNRS 5558, Group. Intérêt Sci. Sylvolab, Guyane, France, 1997.
Maranz, S., Wiesman, Z., Evidence for indigenous selection and distribution of the shea tree, Vitellaria paradoxa, and its potential significance to prevailing parkland savanna tree patterns in sub-Saharan Africa, north of the equator, J. Biogeogr. 30 (2003) 15051516. CrossRefGoogle Scholar
Wadt, L.H.O., Kainer, K.A., Gomes-Silva, D.A.P., Population structure and nut yield of Bertholletia excelsa stand in southwestern Amazonia, For. Ecol. Manag. 211 (2005) 371384. CrossRefGoogle Scholar
Zuidema, P.A., Boot, R.G.A., Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: Impact of seed extraction on recruitment and population dynamics, J. Trop. Ecol. 18 (2002) 131. CrossRefGoogle Scholar
Kelly, D., Sork, V.L., Mast seeding in perennial plants: why, how, where?, Annu. Rev. Ecol. Evol. Syst. 33 (2002) 427447. CrossRefGoogle Scholar
Koenig, W.D., Knops, J.M.H., Patterns of annual seed production by Northern Hemisphere trees: a global perspective, Am. Nat. 155 (2000) 5969. CrossRefGoogle ScholarPubMed
Stephenson, A.G., Flower and fruit abortion: Proximate causes and ultimate functions, Annu. Rev. Ecol. Evol. Syst. 12 (1981) 253279. CrossRefGoogle Scholar
Ghosh S.N., Bera B., Kundu A., Roy S., Dutta Ray S.K., Fruit production and quality improvement in aonla (Emblica Officinalis Gaertn.) through canopy management, J. Agric. Technol. 3 (8) ser. n2˚1 (2009) 40–43.
Assogbadjo, A.E., Kyndt, T., Sinsin, B., Gheysen, G., Van Damme, P., Patterns of genetic and morphometric diversity in Baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa), Ann. Bot. 97 (2006) 819830. CrossRefGoogle Scholar