Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-08T10:12:48.082Z Has data issue: false hasContentIssue false

Aberrant segregation patterns and gene mappability in Ascobolus immersus

Published online by Cambridge University Press:  14 April 2009

G. Leblon
Affiliation:
Université Paris-Sud, Laboratoire de Génétique, Bât. 400, 91405 ORSAY-CEDEX, France
V. Haedens
Affiliation:
Université Paris-Sud, Laboratoire de Génétique, Bât. 400, 91405 ORSAY-CEDEX, France
A. Kalogeropoulos
Affiliation:
Université Paris-Sud, Laboratoire de Génétique, Bât. 400, 91405 ORSAY-CEDEX, France
N. Paquette
Affiliation:
Université Paris-Sud, Laboratoire de Génétique, Bât. 400, 91405 ORSAY-CEDEX, France
J.-L. Rossignol
Affiliation:
Université Paris-Sud, Laboratoire de Génétique, Bât. 400, 91405 ORSAY-CEDEX, France

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Crosses between various types of mutant giving specific patterns of aberrant segregation were performed in the b2 spore colour locus of Ascobolus immersus. The map of 41 mutations showing various patterns of aberrant segregation was established. The frequency of wild-type recombinants and the map additivity, map expansion and map contraction characteristics were shown to be strongly dependent upon the pattern of aberrant segregation of the mutations used. Mutations giving no postmeiotic segregation and an excess of conversion to wild type over conversion to mutant exhibit map expansion in small intervals and a strong map contraction in large intervals. Mutations giving postmeiotic segregations also exhibit map contraction in large intervals. Mutations giving no postmeiotic segregations and an excess of conversion to mutant over conversion to wild type show map additivity and thus provide a simple way for devising gene maps. The relationship between the mapping properties and the pattern of aberrant segregations is accounted for when considering parameters of gene conversion: frequency and distribution of hybrid DNA, frequency and direction of mismatch correction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Decaris, B. (1981). Les mutants instables d' Ascobolus immersus; le rôle dans l'instabilité de l'insertion et de l'excision d'éléments transposables. Thèse de Doctorat d'Etat, Université Paris-Sud, Orsay.Google Scholar
Dicaprio, L. & Hastings, P. J. (1976). Gene conversion and intragenic recombination at the Sup6 locus and the surrounding region in Saccharomyces cerevisiae. Genetics 84, 697721.CrossRefGoogle Scholar
Fincham, J. R. S. (1967). Recombination within the am gene of Neurospora crassa. Genetical Research 9, 4962.CrossRefGoogle Scholar
Fincham, J. R. S. & Holliday, R. (1970). An explanation of fine structure map expansion in terms of excision repair. Molecular and General Genetics 109, 309322.CrossRefGoogle ScholarPubMed
Girard, J. & Rossignol, J.-L. (1974). The suppression of gene conversion and intragenic crossing-over in Ascobolus immersus: evidence for modifiers acting in the heterozygous state. Genetics 76, 221243.CrossRefGoogle ScholarPubMed
Ishikawa, T. (1962). Genetic studies of ad8 mutants in Neurospora crassa. I. Genetic fine structure of the ad8 locus. Genetics 47, 11471161.CrossRefGoogle ScholarPubMed
Kalogeropoulos, A. & Rossignol, J.-L. (1980). Evidence for independent mismatch corrections along the same hybrid DNA tract during meiotic recombination in Ascobolus. Heredity 45, 263270.CrossRefGoogle Scholar
Kouassi, A. (1981). Contribution à l'étude de la structure du gène b1 et analyse des phénomènes d'instabilité au niveau de ce gène chez Ascobolus immersus. Thèse de 3ème cycle, Université Paris-Sud, Orsay.Google Scholar
Kruszewska, A. & Gajewski, W. (1967). Recombination within the Y locus in Ascobolus immersus. Genetical Research 9, 159177.CrossRefGoogle Scholar
Leblon, G. (1972 a). Mechanism of gene conversion in Ascobolus immersus. I. Existence of a correlation between the origin of mutants induced by different mutagens and their conversion spectrum. Molecular and General Genetics 115, 3648.CrossRefGoogle Scholar
Leblon, G. (1972 b). Mechanism of gene conversion in Ascobolus immersus. II. The relationships between the genetic alterations in b1 or b2 mutants and their conversion spectrum. Molecular and General Genetics 116, 322335.CrossRefGoogle ScholarPubMed
Leblon, G. (1979). Intragenic suppression at the b2 locus in Ascobolus immersus. II. Characteristics of the mutations in groups A and E. Genetics 92, 10931106.CrossRefGoogle ScholarPubMed
Leblon, G. & Paquette, N. (1978). Intragenic suppression at the b2 locus in Ascobolus immersus. I. Identification of three distinct groups of suppression. Genetics 90, 475488.CrossRefGoogle ScholarPubMed
Leblon, G. & Rossignol, J.-L. (1973). Mechanism of gene conversion in Ascobolus immersus. III. The interaction of heteroalleles in the conversion process. Molecular and General Genetics 122, 165182.CrossRefGoogle Scholar
Leblon, G. & Rossignol, J.-L. (1979). The interaction during recombination between closely linked allelic frameshift mutant sites in Ascobolus immersus. II. A and B type mutant sites. Heredity 42, 337352.CrossRefGoogle Scholar
Lissouba, P., Mousseau, J., Rizet, G. & Rossignol, J.-L. (1962). Fine structure of genes in Ascobolus immersus. Advances in Genetics 11, 343380.CrossRefGoogle Scholar
Moore, C. N. & Sherman, F. (1975). Role of DNA sequences in genetic recombination in the iso-1-cytochrome c gene of yeast. I. Discrepancies between physical distances and genetic distances determined by five mapping procedures. Genetics 79, 397418.CrossRefGoogle ScholarPubMed
Paquette, N. (1979). Polarité multiple de la recombinaison génétique dans le locus b2 d' Ascobolus immersus. Thèse Doctorat d'Etat, Université Paris-Sud, Centre d'Orsay, 321 pp.Google Scholar
Paquette, N. & Rossignol, J.-L. (1978). Gene conversion spectrum of 15 mutants giving PMS in the b2 locus of Ascobolus immersus. Molecular and General Genetics 163, 313326.CrossRefGoogle Scholar
Pukkila, P. J. (1977). Biochemical analysis of genetic recombination in eukaryotes. Heredity 39, 193217.CrossRefGoogle ScholarPubMed
Rizet, G., Engelman, N., Lefort, C., Lissouba, P. & Mousseau, J. (1960), Sur un ascomycète intéressant pour l'étude de certains aspects du problème de la structure du gène. Comptes rendus de l' Académie des Sciences (Paris) 270, 20502052.Google Scholar
Rizet, G., Rossignol, J.-L. & Lefort, C. (1969). Sur la variété et la spécificité des spectres d'anomalies de ségrégations chez Ascobolus immersus. Comptes rendus de l' Académie des Sciences (Paris) 269, 14271430.Google Scholar
Rossignol, J.-L. & Haedens, V. (1978). The interaction during recombination between closely linked alleile frameshift mutant sites in Ascobolus immersus. I. A (or B) and C type mutant sites. Heredity 40, 405425.CrossRefGoogle Scholar
Rossignol, J.-L. & Haedens, V. (1980). Relationship between asymmetrical and symmetrical hybrid DNA formation during meiotic recombination. Current Genetics 1, 185191.CrossRefGoogle ScholarPubMed
Rossignol, J.-L. & Paquette, N. (1979). Disparity of gene conversion in frameshift mutants located in locus b2 of Ascobolus immersus. Proceedings of the National Academy of Sciences 76, 28712875.CrossRefGoogle ScholarPubMed
Stadler, D. R. & Kariya, B. (1969). Intragenic recombination at the mir locus of Neurospora with segregation at an unselected site. Genetics 63, 291316.CrossRefGoogle Scholar
Yu-Sub, C. C. (1964). Biochemical and morphological mutants of Ascobolus immersus. Genetics 50, 987998.Google Scholar
Yu-Sun, C. C., Wickramaratne, M. R. T. & Whitehouse, H. L. K. (1977). Mutagen specificity in conversion pattern in Sordaria brevicollis. Genetical Research 29, 6581.CrossRefGoogle Scholar