Skip to main content
×
Home
    • Aa
    • Aa

Accuracy of genomic selection using stochastic search variable selection in Australian Holstein Friesian dairy cattle

  • KLARA L. VERBYLA (a1) (a2) (a3), BEN J. HAYES (a1), PHILIP J. BOWMAN (a1) and MICHAEL E. GODDARD (a1) (a2) (a3)
Abstract
Summary

Genomic selection describes a selection strategy based on genomic breeding values predicted from dense single nucleotide polymorphism (SNP) data. Multiple methods have been proposed but the critical issue is how to decide whether an SNP should be included in the predictive set to estimate breeding values. One major disadvantage of the traditional Bayes B approach is its high computational demands caused by the changing dimensionality of the models. The use of stochastic search variable selection (SSVS) retains the same assumptions about the distribution of SNP effects as Bayes B, while maintaining constant dimensionality. When Bayesian SSVS was used to predict genomic breeding values for real dairy data over a range of traits it produced accuracies higher or equivalent to other genomic selection methods with significantly decreased computational and time demands than Bayes B.

Copyright
Corresponding author
*Corresponding author. e-mail: klara.verbyla@dpi.vic.gov.au
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 135 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th March 2017. This data will be updated every 24 hours.