Skip to main content Accessibility help
×
Home

Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous daffodil

  • KATHRYN A. HODGINS (a1) and SPENCER C. H. BARRETT (a1)

Summary

Non-random mating in plant populations can be influenced by numerous reproductive and demographic factors, including floral morphology and inter-plant distance. Here, we investigate patterns of outcrossed mating through male function in Narcissus triandrus, a tristylous, bee-pollinated wild daffodil from the Iberian Peninsula, to test pollen transfer models which predict that floral morphology promotes asymmetrical mating and biased morph ratios. Unlike other tristylous species, N. triandrus has an incompatibility system that permits intra-morph mating and long-level rather than mid-level stamens in the L-morph. Incomplete sex-organ reciprocity should result in significant intra-morph mating in the L-morph. We measured mating patterns in two L-biased populations – dimorphic (two style morphs) and trimorphic (three style morphs) – using multilocus genotyping and maximum-likelihood-based paternity analysis. We also examined the spatial distribution of style morphs and neutral markers to investigate the potential consequence of spatially restricted mating on morph ratios. As predicted, we detected significant amounts of intra-morph mating in the L-morph in both populations. Pollen transfer coefficients generally supported predictions based on the Darwinian hypothesis that anthers and stigmas of equivalent level promote pollinator-mediated cross-pollination in heterostylous populations. There was evidence of significant spatial aggregation of both style morphs and neutral markers in populations of N. triandrus, probably as a result of restricted pollen and seed dispersal. Our results provide empirical support for theoretical models of pollen transfer, which indicate that the commonly observed L-biased morph ratios in Narcissus species result from significant intra-morph mating in the L-morph because of its atypical floral morphology.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous daffodil
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous daffodil
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous daffodil
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Telephone: +1 (416) 9784151. Fax: +1 (416) 9785878. e-mail: barrett@eeb.utoronto.ca

References

Hide All
Baker, A. M., Thompson, J. D. & Barrett, S. C. H. (2000). Evolution and maintenance of stigma-height dimorphism in Narcissus. II. Fitness comparisons between style morphs. Heredity 84, 514524.
Barrett, S. C. H. (ed.) (1992). Evolution and Function of Heterostyly. Berlin: Springer.
Barrett, S. C. H. (1993). The evolutionary biology of tristyly. In Oxford Surveys of Evolutionary Biology (ed. Futuyma, D. & Antonovics, J.), pp. 283326. Oxford: Oxford University Press.
Barrett, S. C. H. & Cruzan, M. B. (1994). Incompatibility in heterostylous plants. In Genetic Control of Incompatibility and Reproductive Development in Flowering Plants (ed. Williams, E. G., Knox, R. B. & Clark, A. E.), pp. 189219. The Netherlands: Kluwer Academic.
Barrett, S. C. H. & Eckert, C. G. (1990). Variation and evolution of mating systems in seed plants. In Biological Approaches and Evolutionary Trends in Plants (ed. Kawano, S.), pp. 229254. London: Academic Press.
Barrett, S. C. H. & Harder, L. D. (2005). The evolution of polymorphic sexual systems in daffodils (Narcissus). New Phytologist 165, 4553.
Barrett, S. C. H. & Hodgins, K. A. (2006). Floral design and the evolution of asymmetrical mating systems. In Ecology and Evolution of Flowers (ed. Harder, L. D. & Barrett, S. C. H.), pp. 239254. Oxford: Oxford University Press.
Barrett, S. C. H., Brown, A. H. D. & Shore, J. S. (1987). Disassortative mating in tristylous Eichhornia paniculata (Pontederiaceae). Heredity 58, 4955.
Barrett, S. C. H., Lloyd, D. G. & Arroyo, J. (1996). Stylar polymorphisms and the evolution of heterostyly in Narcissus (Amaryllidaceae). In Floral Biology: Studies on Floral Evolution in Animal Pollinated Plants (ed. Lloyd, D. G. & Barrett, S. C. H.), pp. 339376. New York: Chapman & Hall.
Barrett, S. C. H., Cole, W. W., Arroyo, J., Cruzan, M. B. & Lloyd, D. G. (1997). Sexual polymorphisms in Narcissus triandrus (Amaryllidaceae): is this species tristylous? Heredity 78, 135145.
Barrett, S. C. H., Harder, L. D. & Cole, W. W. (2004). Correlated evolution of floral morphology and mating-type frequencies in a sexually polymorphic plant. Evolution 58, 964975.
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289300.
Charlesworth, D. (1979). The evolution and breakdown of tristyly. Evolution 33, 486498.
Charlesworth, D. & Charlesworth, B. (1979). A model for the evolution of distyly. American Naturalist 114, 467498.
Cresswell, J. E. (2006). Models of pollinator-mediated gene dispersal in plants. In Ecology and Evolution of Flowers (ed. Harder, L. D. & Barrett, S. C. H.), pp. 83101. Oxford: Oxford University Press.
Darwin, C. (1877). The Different Forms of Flowers on Plants of the Same Species. London: John Murray.
Epperson, B. K. (1990). Spatial patterns of genetic variation within plant populations. In Plant Population Genetics, Breeding and Genetic Resources (ed. Brown, A. H. D., Clegg, M. T., Kahler, A. L. & Weir, B. S.), pp. 229253. Sunderland, MA: Sinauer Associates.
Fernandes, A. (1965). Contribution à la connaissance de la génétique de l'hétérostylie chez le genre Narcissus L. II. L'hétérostylie chez quelques populations de N. triandrus var. cernuus et N. triandrus var. concolor. Genética Ibérica 17, 215239.
Fisher, R. A. (1941). The theoretical consequences of polyploid inheritance for the mid style form in Lythrum salicaria. Annals of Eugenics 11, 3138.
Garant, D. & Kruuk, L. E. B. (2005). How to use molecular marker data to measure evolutionary parameters in wild populations. Molecular Ecology 14, 18431859.
Hamrick, J. L. & Nason, J. D. (1996). Consequences of dispersal in plants. In Population Dynamics in Ecological Space and Time (ed. Rhodes, O. E. J., Chesser, R. K. & Smith, M. H.), pp. 203236. Chicago, IL: The University of Chicago Press.
Hardy, O. J. & Vekemans, X. (2002). SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2, 618620.
Heuch, I. (1979 a). The effect of partial self-fertilization on type frequencies in heterostylous plants. Annals of Botany 44, 611616.
Heuch, I. (1979 b). Equilibrium populations of heterostylous plants. Theoretical Population Biology 15, 4357.
Heywood, J. S. (1991). Spatial analysis of genetic variation in plant populations. Annual Review of Ecology and Systematics 22, 335355.
Hodgins, K. A. & Barrett, S. C. H. (2006 a). Mating patterns and demography in the tristylous daffodil Narcissus triandrus. Heredity 96, 262270.
Hodgins, K. A. & Barrett, S. C. H. (2006 b). Female reproductive success and the evolution of mating-type frequencies in tristylous populations. New Phytologist 171, 569580.
Hodgins, K. A., Stehlik, I., Wang, P. & Barrett, S. C. H. (2007). The development of eight microsatellite loci in the wild daffodil Narcissus triandrus (Amaryllidaceae). Molecular Ecology Notes 7, 510512.
Ishihama, F., Ueno, S., Tsumura, Y. & Washitani, I. (2005). Gene flow and inbreeding depression inferred from fine-scale genetic structure in an endangered heterostylous perennial, Primula sieboldii. Molecular Ecology 14, 983990.
Jones, A. G. & Ardren, W. R. (2003). Methods of parentage analysis in natural populations. Molecular Ecology 12, 25112523.
Jones, K. N. & Reithel, J. S. (2001). Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). American Journal of Botany 88, 447454.
Kalinowski, S. T., Taper, M. L. & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 10991106.
Kalisz, S., Nason, J. D., Hanzawa, F. M. & Tonsor, S. J. (2001). Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 55, 15601568.
Kohn, J. R. & Barrett, S. C. H. (1992). Experimental studies on the functional significance of heterostyly. Evolution 46, 4355.
Levin, D. A. (1974). Spatial segregation of pins and thrums in populations of Hedyotis nigricans. Evolution 28, 648655.
Lloyd, D. G. & Webb, C. J. (1992 a). The evolution of heterostyly. In Evolution and Function of Heterostyly (ed. Barrett, S. C. H.), pp. 151178. Berlin: Springer.
Lloyd, D. G. & Webb, C. J. (1992 b). The selection of heterostyly. In Evolution and Function of Heterostyly (ed. Barrett, S. C. H.), pp. 179208. Berlin: Springer.
Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. (1995). Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82, 14201425.
Marshall, T. C., Slate, J., Kruuk, L. E. B. & Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7, 639655.
Meagher, T. R. (1986). Analysis of paternity within a natural population of Chamaelirium luteum. I. Identification of most-likely male parents. American Naturalist 128, 199215.
Muirhead, C. A. (2001). Consequences of population structure on genes under balancing selection. Evolution 55, 15321541.
Nishizawa, T., Watano, Y., Kinoshita, E., Kawahara, T. & Ueda, K. (2005). Pollen movement in a natural population of Arisaema serratum (Araceae), a plant with a pitfall-trap flower pollination system. American Journal of Botany 92, 11141123.
Oddou-Muratorio, S., Klein, E. K. & Austerlitz, F. (2005). Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent–offspring analysis. Molecular Ecology 14, 44414452.
Olson, M. S., Graf, A. V. & Niles, K. R. (2006). Fine scale spatial structuring of sex and mitochondria in Silene vulgaris. Journal of Evolutionary Biology 19, 11901201.
Ornduff, R. (1980). Heterostyly, population composition, and pollen flow in Hedyotis caerulea. American Journal of Botany 67, 95103.
Ornduff, R. & Weller, S. G. (1975). Pattern diversity of incompatibility groups in Jepsonia heterandra (Saxifragaceae). Evolution 29, 373375.
Pielou, E. C. (1961). Segregation and symmetry in two-species populations as studied by nearest-neighbour relationships. Journal of Ecology 49, 255269.
Sage, T. L., Strumas, F., Cole, W. W. & Barrett, S. C. H. (1999). Differential ovule development following self- and cross-pollination: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae). American Journal of Botany 86, 855870.
Schueler, S., Tusch, A. & Scholz, F. (2006). Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites. Molecular Ecology 15, 32313243.
Smouse, P. E. & Peakall, R. (1999). Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561573.
Sokal, R. R. & Rohlf, F. J. (1995). Biometry. New York, NY: Freeman.
Stehlik, I., Caspersen, J. P. & Barrett, S. C. H. (2006). Spatial ecology of mating success in a sexually polymorphic plant. Proceedings of the Royal Society of London, Series B 273, 387394.
Van Rossum, F., De Sousa, S. C. & Triest, L. (2004). Genetic consequences of habitat fragmentation in an agricultural landscape on the common Primula veris, and comparison with its rare congener, P. vulgaris. Conservation Genetics 5, 231245.
Van Rossum, F. & Triest, L. (2006). Fine-scale genetic structure of the common Primula elatior (Primulaceae) at an early stage of population fragmentation. American Journal of Botany 93, 12811288.
Vassiliadis, C., Saumitou-Laprade, P., Lepart, J. & Viard, F. (2002). High male reproductive success of hermaphrodites in the androdioecious Phillyrea angustifolia. Evolution 56, 13621373.
Vekemans, X. & Hardy, O. J. (2004). New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13, 921935.
Vogler, D. W. & Kalisz, S. (2001). Sex among the flowers: the distribution of plant mating systems. Evolution 55, 202204.
Weis, A. E. (2005). Direct and indirect assortative mating: a multivariate approach to plant flowering schedules. Journal of Evolutionary Biology 18, 536546.
Weller, S. G. (1992). Evolutionary modifications to tristylous breeding systems. In Evolution and Function of Heterostyly (ed. Barrett, S. C. H.), pp. 247272. Berlin: Springer.
Wolfe, L. M. (2001). Associations among multiple floral polymorphisms in Linum pubescens (Linaceae), a heterostylous plant. International Journal of Plant Sciences 162, 335342.
Wolfe, L. M. & Barrett, S. C. H. (1989). Patterns of pollen removal and deposition in tristylous Pontederia cordata L (Pontederiaceae). Biological Journal of the Linnean Society 36, 317329.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed