Skip to main content Accessibility help
×
Home

A Bayesian approach to the identification of panmictic populations and the assignment of individuals

  • KEVIN J. DAWSON (a1) (a2) and KHALID BELKHIR (a1)

Abstract

We present likelihood-based methods for assigning the individuals in a sample to source populations, on the basis of their genotypes at co-dominant marker loci. The source populations are assumed to be at Hardy–Weinberg and linkage equilibrium, but the allelic composition of these source populations and even the number of source populations represented in the sample are treated as uncertain. The parameter of interest is the partition of the set of sampled individuals, induced by the assignment of individuals to source populations. We present a maximum likelihood method, and then a more powerful Bayesian approach for estimating this sample partition. In general, it will not be feasible to evaluate the evidence supporting each possible partition of the sample. Furthermore, when the number of individuals in the sample is large, it may not even be feasible to evaluate the evidence supporting, individually, each of the most plausible partitions because there may be many individuals which are difficult to assign. To overcome these problems, we use low-dimensional marginals (the ‘co-assignment probabilities’) of the posterior distribution of the sample partition as measures of ‘similarity’, and then apply a hierarchical clustering algorithm to identify clusters of individuals whose assignment together is well supported by the posterior distribution. A binary tree provides a visual representation of how well the posterior distribution supports each cluster in the hierarchy. These methods are applicable to other problems where the parameter of interest is a partition of a set. Because the co-assignment probabilities are independent of the arbitrary labelling of source populations, we avoid the label-switching problem of previous Bayesian methods.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A Bayesian approach to the identification of panmictic populations and the assignment of individuals
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A Bayesian approach to the identification of panmictic populations and the assignment of individuals
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A Bayesian approach to the identification of panmictic populations and the assignment of individuals
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Tel: +44 (0)1275 549209. Fax: +44 (0)1275 394007. e-mail: Kevin.Dawson@bbsrc.ac.uk

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed