Skip to main content Accessibility help
×
Home

Bayesian models with dominance effects for genomic evaluation of quantitative traits

  • ROBIN WELLMANN (a1) and JÖRN BENNEWITZ (a1)

Summary

Genomic selection refers to the use of dense, genome-wide markers for the prediction of breeding values (BV) and subsequent selection of breeding individuals. It has become a standard tool in livestock and plant breeding for accelerating genetic gain. The core of genomic selection is the prediction of a large number of marker effects from a limited number of observations. Various Bayesian methods that successfully cope with this challenge are known. Until now, the main research emphasis has been on additive genetic effects. Dominance coefficients of quantitative trait loci (QTLs), however, can also be large, even if dominance variance and inbreeding depression are relatively small. Considering dominance might contribute to the accuracy of genomic selection and serve as a guide for choosing mating pairs with good combining abilities. A general hierarchical Bayesian model for genomic selection that can realistically account for dominance is introduced. Several submodels are proposed and compared with respect to their ability to predict genomic BV, dominance deviations and genotypic values (GV) by stochastic simulation. These submodels differ in the way the dependency between additive and dominance effects is modelled. Depending on the marker panel, the inclusion of dominance effects increased the accuracy of GV by about 17% and the accuracy of genomic BV by 2% in the offspring. Furthermore, it slowed down the decrease of the accuracies in subsequent generations. It was possible to obtain accurate estimates of GV, which enables mate selection programmes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bayesian models with dominance effects for genomic evaluation of quantitative traits
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bayesian models with dominance effects for genomic evaluation of quantitative traits
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bayesian models with dominance effects for genomic evaluation of quantitative traits
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Department of Animal Husbandry and Animal Breeding, University of Hohenheim, D-70599 Stuttgart, Germany. Tel: +711 459 23008. Fax: +711 459 23101. e-mail: r.wellmann@uni-hohenheim.de

References

Hide All
Bennewitz, J. & Meuwissen, T. H. E. (2010). The distribution of QTL additive and dominance effects in porcine F2 crosses. Journal of Animal Breeding and Genetics 127, 171179.
Caballero, A. & Keightley, P. D. (1994). A pleiotropic nonadditive model of variation in quantitative traits. Genetics 138, 883900.
Calus, M. P. L. (2010). Genomic breeding value prediction: methods and procedures. Animal 4, 157164.
Calus, M. P. L., Meuwissen, T. H. E., de Roos, A. P. W. & Veerkamp, R. F. (2008). Accuracy of genomic selection using different methods to define haplotypes. Genetics 178, 553561.
Charlesworth, D. & Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics 10, 783796.
Chib, S. & Greenberg, E. (1995). Understanding the Metropolis–Hastings algorithm. American Statistical Association 49, 327335.
Cockerham, C. C. (1954). An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 39, 859882.
de los Campos, G., Gianola, D. & Rosa, G. J. M. (2009). Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. Journal of Animal Science 87, 18831887.
Duangjinda, M., Bertrand, J. K., Misztal, I. & Druet, T. (2001). Esimation of additive and nonadditive genetic variances in Hereford, Gelbvieh, and Charolais by Method R. Journal of Animal Science 79, 29973001.
Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics. London, UK: Longman.
García-Dorado, A., López-Fanjul, C. & Caballero, A. (1999). Properties of spontaneous mutations affecting quantitative traits. Genetic Research Cambridge 74, 341350.
Garrick, D. J., Taylor, J. F. & Fernando, R. L. (2009). Deregressing estimated breeding values and weighting information for genomic regression analyses. Genetics Selection Evolution 41, 55.
George, E. I. & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association 88, 881889.
Gianola, D. & de los Campos, G. (2008). Inferring genetic values for quantitative traits non-parametrically. Genetic Research 90, 525540.
Gianola, D., Fernando, R. L. & Stella, A. (2006). Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173, 17611776.
Gianola, D. & van Kaam, J. B. C. H. M. (2008). Reproducing Kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178, 22892303.
Gianola, D., de los Campos, G., Hill, W. G., Manfredi, E. & Fernando, R. (2009). Additive genetic variability and the Bayesian alphabet. Genetics 183, 347363.
Grisart, B., Farnir, F., Karim, L., Cambisano, N., Kim, J. J., Kvasz, A., Mni, M., Simon, P., Frère, J.-M., Coppieters, W. & Georges, M. (2004). Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences of the United States of America 101, 23982403.
Habier, D., Tetens, J., Seefried, F.-R., Lichtner, P. & Thaller, G. (2010). The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genetics Selection Evolution 42, 5.
Hayes, B. J., Bowman, P. J., Chamberlain, A. J. & Goddard, M. E. (2009). Invited review: genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science 92, 433443.
Hayes, B. J., Pryce, J., Chamberlain, A. J., Bowman, P. J. & Goddard, M. E. (2010). Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in holstein cattle as contrasting model traits. PLoS Genetics 6, 31001139.
Heffner, E. L., Sorrells, M. E. & Jannink, J.-L. (2009). Genomic selection for crop improvement. Crop Science 49, 112.
Henderson, C. R. (1985). Best linear unbiased prediction of nonadditive genetic merits in noninbred populations. Journal of Animal Science 60, 111117.
Hill, W. G., Goddard, M. E. & Visscher, P. M. (2008). Data and theory point to mainly additive genetic variance for complex traits. PLoS Genetics 4, e1000008.
Kacser, H. & Burns, J. A. (1981). The molecular basis of dominance. Genetics 97, 639666.
Kempthorne, O. (1954). The correlation between relatives in a random mating population. Proceedings of the Royal Society of London. Series B 143, 103113.
Legarra, A., Robert-Granié, C., Croiseau, P., Guillaume, F. & Fritz, S. (2011). Improved Lasso for genomic selection. Genetic Research Cambridge 93, 7787.
Luan, T., Woolliams, J. A., Lien, S., Kent, M., Svendsen, M. & Meuwissen, T. H. E. (2009). The accuracy of genomic selection in norwegian red cattle assessed by cross-validation. Genetics 183, 11191126.
Meuwissen, T. H. E. (2009). Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genetics Selection Evolution 41, 35.
Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 18191829.
Meuwissen, T. H. E. & Goddard, M. E. (2004). Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genetics, Selection, Evolution 36, 261279.
Meuwissen, T. H. E. & Goddard, M. E. (2010a). Accurate prediction of genetic values for complex traits by whole genome resequencing. Genetics 185, 623631.
Meuwissen, T. H. E. & Goddard, M. E. (2010b). The use of family relationships and linkage disequilibrium to impute phase and missing genotypes in up to whole-genome sequence density genotypic data. Genetics 185, 14411449.
Misztal, I. (1997). Estimation of variance components with large-scale dominance models. Journal of Dairy Science 80, 965974.
Ober, U., Erbe, M., Long, N., Porcu, E., Schlather, M. & Simianer, H. (2011). Predicting genetic values: a Kernel-based best linear unbiased prediction with genomic data. Genetics 188, 695708.
Park, T. & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association 103, 681686.
Piepho, H. P. (2009). Ridge regression and extensions for genomewide selection in maize. Crop Science 49, 11651176.
Psarakis, S. & Panaretos, J. (1990). The folded t distribution. Communications in Statistics – Theory and Methods 19, 27172734.
Rosa, G. J. M., Gianola, D. & Padovani, C. R. (2004). Bayesian longitudal data analysis with mixed models and thick-tailed distributions using MCMC. Journal of Applied Statistics 31, 855873.
Serenius, T., Stalder, K. J. & Puonti, M. (2006). Impact of dominance effects on sow longevity. Journal of Animal Breeding and Genetics 123, 355361.
Shawe-Taylor, J. & Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press.
Toro, M. A. & Varona, L. (2010). A note on mate allocation for dominance handling in genomic selection. Genetics Selection Evolution 42, 33.
van Tassell, C. P., Misztal, I. & Varona, L. (2000). Method R estimates of additive genetic, dominance genetic, and permanent environmental fraction of variance for yield and health traits of holsteins. Journal of Dairy Science 83, 18731877.
Verbyla, K. L., Hayes, B. J., Bowman, P. J. & Goddard, M. E. (2009). Accuracy of genomic selection using stochastic search variable selection in Australian Holstein Friesian dairy cattle. Genetics Research Cambridge 91, 307311.
Verbyla, K. L., Bowman, P. J., Hayes, B. J. & Goddard, M. E. (2010). Sensitivity of genomic selection to using different prior distributions. BMC Proceedings 4 (Suppl. 1), S5.
Villa-Angulo, R., Matukumalli, L. K., Gill, C. A., Choi, J., Van Tassell, C. P. & Grefenstette, J. J. (2009). High-resolution haplotype block structure in the cattle genome. BMC Genetics 10, 19.
Wellmann, R. & Bennewitz, J. (2011). The contribution of dominance to the understanding of quantitative genetic variation. Genetics Research Cambridge 93, 139154.
Wolc, A., Stricker, C., Arango, J., Settar, P., Fulton, J. E., O'Sullivan, N. P., Preisinger, R., Habier, D., Fernando, R., Garrick, D. J., Lamont, S. J. & Deckers, J. C. M. (2011). Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model. Genetics Selection Evolution 43, 5.
Xu, S. (2003). Estimating polygenic effects using markers of the entire genome. Genetics 163, 789801.
Yi, N., George, V. & Allison, D. B. (2003). Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics 164, 11291138.
Type Description Title
PDF
Supplementary materials

Wellmann supplementary material
Wellmann supplementary material

 PDF (137 KB)
137 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed