Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T22:38:04.857Z Has data issue: false hasContentIssue false

Compatibility and sex specific phage plating characteristics of the TOL and NAH catabolic plasmids

Published online by Cambridge University Press:  14 April 2009

G. P. White
Affiliation:
School of Biological Technology, University of New South Wales, P.O. Box 1, Kensington, New South Wales, Australia 2033
N. W. Dunn
Affiliation:
School of Biological Technology, University of New South Wales, P.O. Box 1, Kensington, New South Wales, Australia 2033
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sex specific bacteriophage PR4 has been found to plate on P. aeruginosa strains harbouring the TOL catabolic plasmid or the plasmid pND2 derived from TOL. Based on this, attempts were made to place TOL into a Pseudomonas plasmid incompatibility group and by showing that pND2 is incompatible with the R plasmid R2, TOL has been placed into the P-9 group. The NAH catabolic plasmid has been reported to be incompatible with TOL, pND2 and a variety of other plasmids derived from TOL. Thus, these plasmids also would appear to belong to the P-9 incompatibility group.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Austen, R. A. & Dunn, N. W. (1977). A comparative study of the NAH and TOL catabolic plasmids in Pseudomonas putida. Australian Journal of Biological Sciences 30, 357366.CrossRefGoogle ScholarPubMed
Bradley, D. E. (1974). Adsorption of bacteriophages specific for Pseudomonas aeruginosa R factors RP1 and R1822. Biochemical and Biophysical Research Communications 57, 893900.Google Scholar
Bradley, D. B. & Rutherford, E. L. (1975). Basic characterization of a lipid-containing bacteriophage specific for plasmids of the P, N and W compatibility groups. Canadian Journal of Microbiology 21, 152163.CrossRefGoogle Scholar
Chandler, P. M. & Krishnapillai, V. (1974 a). Phenotypic properties of R Factors of Pseudomonas aeruginosa: R factors readily transferable between Pseudomonas and the Enterobacteriaceae. Genetical Research 23, 239250.CrossRefGoogle ScholarPubMed
Chandler, P. M. & Krishnapillai, V. (1974 b). Phenotypic properties of R factors of Pseudomonas aeruginosa: R factors transferable only in Pseudomonas aeruginosa. Genetical Research 23, 251258.CrossRefGoogle ScholarPubMed
Chandler, P. M. & Krishnapillai, V. (1974 c). Isolation and properties of recombination deficient mutants of Pseudomonas aeruginosa. Mutation Research 23, 1523.CrossRefGoogle ScholarPubMed
Chou, I. N. G., Katz, D. & Gunsalus, I. C. (1974) Fusion and compatibility of camphor and octane plaamids in Pseudomonas. Proceedings of the National Academy of Sciences, U.S.A. 71, 26752678.CrossRefGoogle ScholarPubMed
Dunn, N. W. & Gunsalus, I. C. (1973). Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. Journal of Bacteriology 114, 974979.CrossRefGoogle ScholarPubMed
Falkow, S. (1975). Infectious Multiple Drug Resistance. Bristol: Pion, pp. 4546, 184188.Google Scholar
Frtello, D. A., Mylroie, J. R., Gibson, D. T., Rogers, J. E. & Chakrabarty, A. M. (1976). XYL, a nonconjugative xylene – degradative plasmid in Pseudomonas Pxy. Journal of Bacteriology 127, 12171224.CrossRefGoogle Scholar
Grinsted, J., Saunders, J. R., Ingram, L. C., Sykes, R. B. & Richmond, M. H. (1972). Properties of an R factor which originated in Pseudomonas aeruginosa 1822. Journal of Bacteriology 110, 529537.CrossRefGoogle Scholar
Holloway, B. W. (1969). Genetics of Pseudomonas. Bacteriological Reviews 33, 419443.CrossRefGoogle ScholarPubMed
Holloway, B. W. & Richmond, M. H. (1973). R-Factors used for genetic studies in strains of Pseudomonas aeruginosa and their origin. Genetical Research 21, 103105.CrossRefGoogle Scholar
Jacoby, G. A. (1974). American Society for Microbiology Conference on Plasmids. Reported in Shahrabadi, M. S., Bryan, L. E. & Van Den Elzen, H. M. (1975). Further properties of P-2 R-factors of Pseudomonas aeruginosa and their relationship to other plasmid groups. Canadian Journal of Microbiology 21, 592605.Google Scholar
Jacoby, G. A. (1978). Plasmids of Pseudomonas aeruginosa. In Pseudomonas aeruginosa: Clinical Manifestations of Infection and Current Therapy (ed. Doggett, R. G.). New York: Academic Press. (In the Press.)Google Scholar
Kawakami, Y., Mikoshiba, F., Nagasaki, S., Matsumoto, H. & Tazaki, T. (1972). Prevalence of Pseudomonas aeruginosa strains possessing R factor in a hospital. Journal of Antibiotics XXV, 607609.CrossRefGoogle Scholar
Mitsuhashi, S. (1971). Transferable Drug Resistance Factor R, pp. 7276. Tokyo: University Park Press.Google Scholar
Olsen, R. H. & Shipley, P. (1973). Host range and properties of the Pseudomonas aeruginosa R factor R1822. Journal of Bacteriology 113, 772780.CrossRefGoogle ScholarPubMed
Olsen, R. H. & Shipley, P. L. (1975). RP1 properties and fertility inhibition among P, N, W and X incompatibility group plasmids. Journal of Bacteriology 123, 2835.CrossRefGoogle Scholar
Olsen, R. H. & Thomas, D. D. (1973). Characteristics and purification of PRR1, an RNA phage specific for the broad host range Pseudomonas R1822 drug resistance plasmid. Journal of Virology 12, 15601567.Google Scholar
Pemberton, J. M. (1973). F116: a DNA bacteriophage specific for the pili of Pseudomonas aeruginosa strain PA0. Virology 55, 558560.CrossRefGoogle Scholar
Stanisich, V. A. (1974). The properties and host range of male-specific bacteriophages of Pseudomonas aeruginosa. Journal of General Microbiology 84, 332342.CrossRefGoogle ScholarPubMed
Stanisich, V. A. (1976). Isolation and characterization of plasmids in Pseudomonas aeruginosa. Bulletin de l'Institut Pasteur 74, 285294.Google Scholar
White, G. P. & Dunn, N. W. (1977). Apparent fusion of the TOL plasmid with the R91 drug resistance plasmid in Pseudomonas aeruginosa. Australian Journal of Biological Science 30, 345355.CrossRefGoogle ScholarPubMed
White, G. P. & Dunn, N. W. (1978). Evidence for transductional shortening of the plasmid obtained by recombination between the TOL catabolic plasmid and the R91 R plasmid. Genetical Research. (In the Press.)Google Scholar
Williams, P. A. & Murray, K. (1974). Metabolism of benzoate and the methyl benzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. Journal of Bacteriology 120, 416423.Google Scholar
Wong, C. L. & Dunn, N. W. (1974). Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2. Genetical Research 23, 227232.CrossRefGoogle ScholarPubMed