Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T19:46:17.025Z Has data issue: false hasContentIssue false

Differences in P element population dynamics between the sibling species Drosophila melanogaster and Drosophila simulans

Published online by Cambridge University Press:  14 April 2009

Kiyoshi Kimura
Affiliation:
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
Margaret G. Kidwell*
Affiliation:
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Patterns of P element establishment and evolution were compared in populations of D. melanogaster and D. simulans. For each species, mixed populations were initiated with M strain flies lacking P elements together with P strain flies having similar P element copy numbers and phenotypes. The mixed populations were subsequently maintained under similar environmental conditions. On the basis of gonadal sterility assays, P elements tended to be significantly more active in D. melanogaster than in D. simulans populations. This activity difference between the two species was positively associated with P element copy number, determined by restriction enzyme analysis, and transposition frequency, as determined by a transposition assay. Host factors are the most likely explanation for the observed species variation. Difficulty of establishment may be a factor determining the absence of P elements in natural populations of D. simulans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

Anxolabéhère, D., Kidwell, M. G. & Périquet, G. (1988). Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. Molecular Biology and Evolution 5, 252269.Google ScholarPubMed
Belo, M. & de Oliveira Filho, J. J. (1976). Especies domesticas de Drosophila: V. Influecies de factores ambientais no mumero de individuos capturados. Revistas Brasileira de Biologia 36, 903909.Google Scholar
Berg, D. E. & Howe, M. (eds) (1989). Mobile DNA. Washington D.C.: American Society of Microbiology Publications.Google Scholar
Berg, C. A. & Spradling, A. C. (1991). Studies on the rate and site-specificity of P element transposition. Genetics 127, 515524.CrossRefGoogle ScholarPubMed
Bingham, P. M., Kidwell, M. G. & Rubin, G. M. (1982). The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P strain-specific transposon family. Cell 28, 9951004.CrossRefGoogle Scholar
Brookfield, J. F. Y., Montgomery, E. & Langley, C. (1984). Apparent absence of transposable elements related to the P elements of D. melanogaster in other species of Drosophila. Nature 310, 330332.CrossRefGoogle Scholar
Colgan, D. J. & Angus, D. S. (1978). Bisexual hybrid sterility in Drosophila melanogaster. Genetics 89, 514.CrossRefGoogle ScholarPubMed
Daniels, S. B., Clark, S. H., Kidwell, M. G. & Chovnick, A. (1987). Genetic transformation of Drosophila melanogaster with an autonomous P element: phenotypic and molecular analysis of long-established transformed lines. Genetics 115, 711723.CrossRefGoogle Scholar
Daniels, S. B., Boussy, I. A., Tukey, A., Carillo, M. & Kidwell, M. G. (1987). Variability among ‘true M’ lines in P-M gonadal dysgenesis potential. Drosophila Information Service 66, 3739.Google Scholar
Daniels, S. B., Peterson, K. R., Strausbaugh, L. D., Kidwell, M. G. & Chovnick, A. (1990). Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124, 339355.CrossRefGoogle Scholar
Daniels, S. B. & Strausbaugh, L. D. (1986). The distribution of P element sequences in Drosophila: the willistoni and saltans species groups. Journal of Molecular Evolution 23, 138148.CrossRefGoogle ScholarPubMed
Daniels, S. B., Strausbaugh, L. D. & Armstrong, R. A. (1985). Molecular analysis of P element behavior in Drosophila simulans transformants. Molecular and General Genetics 200, 258265.CrossRefGoogle ScholarPubMed
David, J. R. & Tsacas, L. (1980). Cosmopolitan, subcosmo-politan and widespread species: Different strategies within the Drosophila family (Diptera). C.R. Soc. Biogeogr. 57, 1126.Google Scholar
Dobzhansky, Th. & Pavan, L. (1950). Local and seasonal variations in relative frequencies of Drosophila in Brazil. Journal of Animal Ecology 19, 114.CrossRefGoogle Scholar
Dowsett, A. P. & Young, M. W. (1982). Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proceedings of the National Academy of Sciences, USA 79, 45704574.CrossRefGoogle ScholarPubMed
Engels, W. R. (1989). P elements in Drosophila. In: Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 437484. Washington D.C: American Society of Microbiology Publications.Google Scholar
Engels, W. R. (1992). The origin of P elements in Drosophila melanogaster. Bio Essays 14, 681686.Google ScholarPubMed
Good, A. G., Meister, G., Brock, H., Grigliatti, T. A. & Hickey, D. (1989). Rapid spread of transposable P elements in experimental populations of Drosophila melanogaster. Genetics 122, 387396.CrossRefGoogle ScholarPubMed
Johnson, C. W. (1913). The distribution of some species of Drosophila. Psyche 20, 202205.CrossRefGoogle Scholar
Karess, R. E. & Rubin, G. M. (1984). Analysis of P transposable element functions in Drosophila. Cell 38, 135146.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1983). Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 80, 16551659.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1986). P-M mutagenesis. In: Drosophila: A practical approach (ed. Roberts, D. B.), pp. 5981. Oxford: IRL Press.Google Scholar
Kidwell, M. G. (1990). Evolutionary aspects of hybrid dysgenesis in Drosophila. Canadian Journal of Zoology 68, 17161726.CrossRefGoogle Scholar
Kidwell, M. G. (1993). Lateral transfer in natural populations of eukaryotes. Annual Review of Genetics 27, 235256.CrossRefGoogle ScholarPubMed
Kidwell, M. G., Novy, J. B. & Feeley, S. M. (1981). Rapid unidirectional change of hybrid dysgenesis potential in Drosophila. Journal of Heredity 11, 3238.CrossRefGoogle Scholar
Kimura, K. (1991). Species specific factors affecting the population dynamics of P transposable elements in Drosophila melanogaster and Drosophila simulans. Ph.D. Dissertation, University of Arizona.Google Scholar
Kiyasu, P. K. & Kidwell, M. G. (1984). Hybrid dysgenesis in Drosophila melanogaster: the evolution of mixed P and M populations maintained at high temperature. Genetical Research 44, 251259.CrossRefGoogle Scholar
Lachaise, D., Cariou, M., David, J. R., Lemeunier, F., Tsacas, L. & Ashburner, M. (1988). Historical bio-geography of the Drosophila melanogaster species subgroup. Evolutionary Biology 22, 159227.CrossRefGoogle Scholar
Laski, F. A., Rio, D. C. & Rubin, G. M. (1986). Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44, 719.CrossRefGoogle ScholarPubMed
Miller, W. J., Hagemann, S., Reiter, E. & Pinsker, W. (1992). P element homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proceedings of the National Academy of Sciences, USA 89, 40184022.CrossRefGoogle ScholarPubMed
Montchamp-Moreau, C. (1990). Hybrid dysgenesis in P-transformed lines of Drosophila simulans. Evolution 44, 194203.Google ScholarPubMed
O'Brochta, D. A. & Handler, A. M. (1988). Mobility of P elements in Drosophilids and non-drosophilids. Proceedings of the National Academy of Sciences, USA 85, 60526056.CrossRefGoogle Scholar
Paricio, N., Pérez-Alonso, M., Martinez-Sebastian, M. J. & deFrutos, R. (1991). P sequences of Drosophila subobscura lack exon 3 and may encode a 66 kd repressor-like protein. Nucleic Acids Research 19, 67136718.CrossRefGoogle ScholarPubMed
Preston, C. R. & Engels, W. R. (1989). Spread of P transposable elements in inbred lines of Drosophila melanogaster. In: Progress in Nucleic Acid Research and Molecular Biology. Hollaender Symposium Proceedings 36, 7185.Google Scholar
Rio, D. C. & Rubin, G. M. (1988). Identification and purification of a Drosophila protein that binds to the terminal 31-base-pair inverted repeats of the P trans-posable element. Proceedings of the National Academy of Sciences, USA 85, 89298933.CrossRefGoogle Scholar
Scavarda, N. J. & Hartl, D. L. (1987). Germ line abnormalities in Drosophila simulans transfected with the transposable P element. Journal of Genetics 66, 115.CrossRefGoogle Scholar
Spradling, A. C. & Rubin, G. M. (1982). Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218, 341347.CrossRefGoogle ScholarPubMed
Steller, H. & Pirrota, V. (1986). P transposons controlled by the heat shock promoter. Molecular Cell Biology 6, 16401649.Google ScholarPubMed
Young, M. W. & Schwartz, H. E. (1981). Nomadic gene families in Drosophila. Cold Spring Harbor Symposia on Quantitative Biology 45, 629640.CrossRefGoogle ScholarPubMed