Hostname: page-component-7d684dbfc8-rcw2t Total loading time: 0 Render date: 2023-09-28T14:14:30.778Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Effective population size/adult population size ratios in wildlife: a review

Published online by Cambridge University Press:  14 April 2009

Richard Frankham
School of Biological Sciences, Macquarie University NSW 2109, Australia. Phone: (612) 850-8186. Fax: (612) 850-8245. E-mail:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effective population size is required to predict the rate of inbreeding and loss of genetic variation in wildlife. Since only census population size is normally available, it is critical to know the ratio of effective to actual population size (Ne/N). Published estimates of Ne/N (192 from 102 species) were analysed to identify major variables affecting the ratio, and to obtain a comprehensive estimate of the ratio with all relevant variables included. The five most important variables explaining variation among estimates, in order of importance, were fluctuation in population size, variance in family size, form of N used (adults υ. breeders υ. total size), taxonomic group and unequal sex-ratio. There were no significant effects on the ratio of high υ. low fecundity, demographic υ. genetic methods of estimation, or of overlapping υ. non-overlapping generations when the same variables were included in estimates. Comprehensive estimates of Ne/N (that included the effects of fluctuation in population size, variance in family size and unequal sex-ratio) averaged only 0·10–0·11. Wildlife populations have much smaller effective population sizes than previously recognized.

Research Article
Copyright © Cambridge University Press 1995


Allendorf, F. W., Harris, R. B. & Metzgar, L. H. (1991). Estimation of effective population size of grizzly bears by computer simulation. Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology pp. 650654.Google Scholar
Avise, J. C., Ball, R. M. & Arnold, J. (1988). Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Molecular Biology and Evolution 5, 331344.Google ScholarPubMed
Baker, M. C. (1981). Effective population size in a songbird: some possible implications. Heredity 46, 209218.CrossRefGoogle Scholar
Barrett, J. W., Knowles, P. & Cheliak, W. M. (1987). The mating system in a black spruce clonal seed orchard. Canadian Journal of Forest Research 17, 379382.CrossRefGoogle Scholar
Barrowclough, G. F. & Shields, G. F. (1984). Karyotypic evolution and long-term effective population sizes of birds. Auk 101, 99102.Google Scholar
Bartley, D., Bagley, M., Gall, G. & Bentley, B. (1992). Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conservation Biology 6, 365375.CrossRefGoogle Scholar
Begon, M. (1977). The effective size of a natural Drosophila subobscura population. Heredity 38, 1318.CrossRefGoogle ScholarPubMed
Begon, M., Krimbas, C. B. & Loukas, M. (1980). The genetics of Drosophila subobscura populations. XV. Effective size of a natural population estimated by three independent methods. Heredity 45, 335350.CrossRefGoogle Scholar
Berg, W. J. (1987). Effective population size estimates and inbreeding in feral horses: a preliminary assessment. Equine Veterinary Science 6, 240245.CrossRefGoogle Scholar
Berger, J. & Cunningham, C. (1995). Multiple bottlenecks, allopatric lineages and badlands bison Bos bison: consequences of lineage mixing. Biological Conservation 71, 1223.CrossRefGoogle Scholar
Berven, K. A. & Grudzien, T. A. (1990). Dispersal in the wood frog (Rana sylvatica): implications for genetic population structure. Evolution 44, 20472056.Google ScholarPubMed
Blackwell, B. F., Reed, J. M., Walters, J. R. & Doerr, P. D. (1995). Inbreeding rate and effective population size: a comparison of estimates from pedigree analysis and a demographic model. Biological Conservation 71, 299304.CrossRefGoogle Scholar
Borlase, S. C., Loebel, D. A., Frankham, R., Nurthen, R. K., Briscoe, D. A. & Daggard, G. E. (1993). Modeling problems in conservation genetics using captive Drosophila populations: consequences of equalization of family sizes. Conservation Biology 7, 122131.CrossRefGoogle Scholar
Briscoe, D. A., Malpica, J. M., Robertson, A., Smith, G. J., Frankham, R., Banks, R. G. & Barker, J. S. F. (1992). Rapid loss of genetic variation in large captive populations of Drosophila flies: Implications for genetic management of captive populations. Conservation Biology 6, 416425.CrossRefGoogle Scholar
Briton, J., Nurthen, R. K., Briscoe, D. A. & Frankham, R. (1994). Modelling problems in conservation genetics using captive Drosophila populations: Consequences of harems. Biological Conservation 69, 267275.CrossRefGoogle Scholar
Brookfield, J. F. Y. & Sharp, P. M. (1994). Neutralism and selectionism face up to DNA data. Trends in Genetics 10, 109111.CrossRefGoogle ScholarPubMed
Brown, A. H. D. & Schoen, D. J. (1992). Plant population genetic structure and biological conservation. In Conservation of Biodiversity for Sustainable Development (ed. Sandlund, O. T.. Hindar, K. and Brown, A. H. D.), pp. 88104. Oslo: Scandinavian University Press.Google Scholar
Butlin, R. K. & Day, T. H. (1989). Environment correlates of inversion frequencies in natural populations of seaweed flies (Coelopa frigida). Heredity 62, 223232.CrossRefGoogle Scholar
Caballero, A. (1994). Developments in the prediction of effective population size. Heredity 73, 657679.CrossRefGoogle ScholarPubMed
Carroll, J. B. & Mace, G. M. (1988). Population management of the Rodrigues fruit bat Pteropus rodricensis in captivity. International Zoo Yearbook 27, 7078.CrossRefGoogle Scholar
Charlesworth, B. (1980). Evolution in Age-Structured Populations. Cambridge: Cambridge University Press.Google Scholar
Cheliak, W. M., Pitel, J. A. & Murray, G. (1985). Population structure and the mating system of white spruce. Canadian Journal of Forest Research 15, 301308.CrossRefGoogle Scholar
Chepko-Sade, B. D., Shields, W. M., Berger, J., Halpin, Z. T., Jones, W. T., Rogers, L. L., Rood, J. P. & Smith, A. T. (1987). The effects of dispersal and social structure on effective population size. In Mammalian Dispersal Patterns: The Effects of Social Structure on Population Genetics (ed. Chepko-Sade, B. D. and Halpin, Z. T.), pp. 287321. Chicago, IL: University of Chicago Press.Google Scholar
Crawford, T. J. (1984). What is a population? In Evolutionary Ecology (ed. Shorrocks, B.), pp. 135173. Oxford: British Ecological Society Symposium No. 23, Blackwell.Google Scholar
Crow, J. F. & Kimura, M. (1970). An Introduction to Population Genetics Theory. New York: Harper & Row.Google Scholar
Crow, J. F. & Morton, N. E. (1955). Measurement of gene frequency drift in small populations. Evolution 9, 202214.CrossRefGoogle Scholar
Daly, J. C. (1981). Effects of social organization and environmental diversity on determining the genetic structure of a population of wild rabbits, Oryctolagus cuniculus. Evolution 35, 689706.CrossRefGoogle Scholar
Debouzie, D. (1980). Estimate of variance effective population size in a laboratory Ceratitis population. Heredity 45, 297299.CrossRefGoogle Scholar
Denniston, C. (1978). Small population size and genetic diversity. Implications for endangered species. In Endangered Birds: Management Techniques for Preserving Endangered Species (ed. Temple, S. A.), pp. 281290. Madison, WI: University of Wisconsin Press.Google Scholar
Dinerstein, E. & McCracken, G. F. (1990). Endangered greater one-horned rhinoceros carry high levels of genetic variation. Conservation Biology 4, 417422.CrossRefGoogle Scholar
Easteal, S. & Floyd, R. B. (1986). The ecological genetics of introduced populations of the giant toad, Bufo marinus (Amphibia: Anura): dispersal and neighbourhood size. Biological Journal of the Linnean Society 27, 1745.CrossRefGoogle Scholar
Eguiarte, L. E., Burquez, A., Rodriguez, J., Martinez-Ramos, M., Sarukhan, J. & Pinero, D. (1993). Direct and indirect estimates of neighborhood and effective population size in a tropical palm Astrocaryum mexicanum. Evolution 47, 7587.CrossRefGoogle Scholar
Emigh, T. H. & Pollak, E. (1979). Fixation probabilities and effective population numbers in diploid populations with overlapping generations. Theoretical Population Biology 15, 86107.CrossRefGoogle Scholar
Falconer, D. S. (1989). Introduction to Quantitative Genetics (3rd ed.). Harlow: Longman.Google Scholar
Felsenstein, J. (1971). Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 68, 581597.Google ScholarPubMed
Fenster, C. B. (1991). Gene flow in Chamaecrista fasciculata (Leguminosae) II. Gene establishment. Evolution 45, 410422.CrossRefGoogle ScholarPubMed
Fleischer, R. C. (1983). A comparison of theoretical and electrophoretic assessments of genetic structure in populations of the house sparrow (Passer domesticus). Evolution 37, 10011009.Google Scholar
FitzSimmons, N. N., Buskirk, S. W., Smith, M. H. (1995). Population history, genetic variability, and horn growth in bighorn sheep. Conservation Biology 9, 314323.CrossRefGoogle Scholar
Gill, D. E. (1978). Effective population size and interdemic migration rates in a metapopulation of the red-spotted newt, Notophthalmus viridescens (Rafinesque). Evolution 32, 839849.CrossRefGoogle Scholar
Glenn, T. C. (1990). Genetic Variation in the Michigan Elk (Cervus elaphus). M.Sc. thesis, University of Michigan.Google Scholar
Gowe, R. S., Robertson, A. & Latter, B. D. H. (1959). Environment and poultry breeding problems. 5. The design of poultry control strains. Poultry Science 38, 462471.CrossRefGoogle Scholar
Grant, B. R. & Grant, P. R. (1989). Evolutionary Dynamics of a Natural Population: The Large Cactus Finch of the Galapagos. Chicago, IL: University of Chicago Press.Google Scholar
Grant, P. R. & Grant, B. R. (1992). Demography and the genetically effective size of two populations of Darwin's finches. Ecology 73, 766784.CrossRefGoogle Scholar
Greenwood, J. J. D. (1974). Effective population size in the snail Cepaea nemoralis. Evolution 28, 513526.CrossRefGoogle Scholar
Harpending, H. & Cowan, S. (1986). Primate population structure: evaluation of models. American Journal of Physical Anthropology 70, 6368.CrossRefGoogle Scholar
Hedgecock, D., Chow, V. & Waples, R. S. (1992). Effective population numbers of shellfish broodstocks estimated from temporal variance in allelic frequencies. Aquaculture 108, 215232.CrossRefGoogle Scholar
Heywood, J. S. (1986). The effect of plant size variation on genetic drift in populations of annuals. American Naturalist 127, 851861.CrossRefGoogle Scholar
Hill, W. G. (1981). Estimation of effective population size from data on linkage disequilibrium. Genetical Research 38, 209216.CrossRefGoogle Scholar
Husband, B. C. & Barrett, S. C. H. (1992). Effective population size and genetic drift in tristylous Eichhornia paniculata (Pontederiaceae). Evolution 46, 18751890.CrossRefGoogle Scholar
Imaizumi, Y., Nei, M. & Furusho, T. (1970). Variability and heritability of human fertility. Annals of Human Genetics 33, 251259.CrossRefGoogle Scholar
Jain, S. K. & Rai, K. N. (1974). Population biology of Avena. IV. Polymorphism of small populations of Avena fatua. Theoretical and Applied Genetics 44, 711.Google ScholarPubMed
Jorde, L. B. (1980). The genetic structure of subdivided human populations: A review. Current Developments in Anthropological Genetics 1, 135208.CrossRefGoogle Scholar
Kerster, H. W. (1964). Neighborhood size in the rusty lizard, Sceloporus olivaceus. Evolution 18, 445457.CrossRefGoogle Scholar
Kinnaird, M. F. & O'Brien, T. G. (1991). Viable populations for an endangered forest primate, the Tana River crested mangabey (Cercocebus galeritus galeritus). Conservation Biology 5, 203213.CrossRefGoogle Scholar
Koenig, W. D. (1988). On determination of viable population size in birds and mammals. Wildlife Society Bulletin 16, 230234.Google Scholar
Lande, R. (1979). Effective deme size during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33, 234251.CrossRefGoogle Scholar
Lande, R. & Barrowclough, G. F. (1987). Effective population size, genetic variation, and their use in population management. In Viable Populations for Conservation (ed. Soulé, M. E.), pp. 87123. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
López-Fanjul, C. & Torroja, E. (1982). Presion ambiental y reaccion genetica en caracteres cuantitativos. Actas V Congr. Latinoam. Genetica pp. 272279.Google Scholar
MacCluer, J. W. & Shull, W. J. (1970). Estimating the effective size of human populations. American Journal of Human Genetics 22, 176183.Google ScholarPubMed
Mace, G. M. (1986). Genetic management of small populations. International Zoo Yearbook 24/25, 167174.CrossRefGoogle Scholar
Mace, G. M. & Lande, R. (1991). Assessing extinction threats: towards a reevaluation of IUCN threatened species categories. Conservation Biology 5, 148157.CrossRefGoogle Scholar
Malpica, J. M. & Briscoe, D. A. (1981). Effective population number estimates of laboratory populations of Drosophila melanogaster. Experientia 37, 947948.CrossRefGoogle Scholar
Marzluff, J. M. & Balda, R. P. (1989). Causes and consequences of female-biased dispersal in a flock-living bird, the Pinyon jay. Ecology 70, 316328.CrossRefGoogle Scholar
Merrell, D. J. (1968). A comparison of the estimated and the ‘effective size’ of breeding populations of the leopard frog Rana pipiens. Evolution 22, 274283.Google Scholar
Morton, N. E. & Lalouel, J. M. (1973). Bioassay of kinship in Micronesia. American Journal of Physical Anthropology 38, 709720.CrossRefGoogle ScholarPubMed
Murata, M. (1970). Frequency distribution of lethal chromosomes in small populations. Genetics 64, 559571.Google ScholarPubMed
Nei, M. (1970). Effective size of human populations. American Journal of Human Genetics 22, 694696.Google ScholarPubMed
Nei, M. & Graur, D. (1984). Extent of protein polymorphism and the neutral mutation theory. Evolutionary Biology 17, 73118.CrossRefGoogle Scholar
Nei, M. & Imaizumi, Y. (1966). Genetic structure of human populations. II. Differentiation of blood group gene frequencies among isolated populations. Heredity 21, 183190.CrossRefGoogle ScholarPubMed
Nei, M. & Murata, M. (1966). Effective population size when fertility is inherited. Genetical Research 8, 257260.CrossRefGoogle ScholarPubMed
Nei, M. & Tajima, F. (1981). Genetic drift and estimation of effective population size. Genetics 98, 625640.Google ScholarPubMed
Nozawa, K. (1963). Competition between brown gene and its wild-type allele in Drosophila melanogaster. II. Estimation of relative viability of brown homozygotes and an analysis of change in gene-frequency. Japanese Journal of Genetics 38, 620.CrossRefGoogle Scholar
Nozawa, K. (1970). Estimation of the effective size in Drosophila experimental populations. Drosophila Information Service 45, 117118.Google Scholar
Nozawa, K. (1972). Population genetics of Japanese monkeys. I. Estimation of the effective troop size. Primates 13, 381393.CrossRefGoogle ScholarPubMed
Nunney, L. (1993). The influence of mating system and overlapping generations on effective population size. Evolution 47, 13291341.CrossRefGoogle ScholarPubMed
Nunney, L. & Campbell, K. A. (1993). Assessing minimum viable population size: demography meets population genetics. Trends in Ecology and Evolution 8, 234239.CrossRefGoogle ScholarPubMed
Nunney, L. & Elam, D. R. (1994). Estimating the effective population size of conserved populations. Conservation Biology 8, 175184.CrossRefGoogle Scholar
Pray, L. A., Goodnight, C. J., Stevens, L., Schwartz, J. M. & Yan, G. (1995). The effect of population size on effective population size: an empirical study in the red flour beetle Tribolium castaneum. Conservation Biology (submitted).Google Scholar
Prout, T. (1954). Genetic drift in irradiated experimental populations of Drosophila melanogaster. Genetics 39, 529546.Google ScholarPubMed
Rails, K. & Ballou, J., (1983). Extinction: lessons from zoos. In Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations (ed. Schonewald-Cox, C. M., Chambers, S. M., MacBryde, B. & Thomas, L.), pp. 164184. Menlo Park, CA: Benjamin/Cummings.Google Scholar
Ralls, K., Ballou, J. & Brownell, R. L. Jr. (1983). Genetic diversity in California sea otters: theoretical considerations and management implications. Biological Conservation 25, 209232.CrossRefGoogle Scholar
Reed, J. M., Doerr, P. D. & Walters, J. R. (1986). Determining minimum population size for birds and mammals. Wildlife Society Journal 14, 244261.Google Scholar
Reed, J. M., Walters, J. R., Emigh, T. E. & Seaman, D. E. (1993). The effective population size in red-cockaded woodpeckers: Population and model differences. Conservation Biology 7, 302308.CrossRefGoogle Scholar
Robertson, A. (1962). Selection for heterozygotes in small populations. Genetics 41, 12911300.Google Scholar
Rowley, I., Russell, E. & Brooker, M. (1993). Inbreeding in birds. In The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives (ed. Thornhill, N. W.), pp. 304328. Chicago, IL: University of Chicago Press.Google Scholar
Ryman, N., Baccus, R., Reuterwall, C. & Smith, M. H. (1981). Effective population size, generation interval, and potential loss of genetic variability in game species under different hunting regimes. Oikos 36, 257266.CrossRefGoogle Scholar
Salzano, F. M. (1971). Demographic and genetic interrelationships among the Cayapo Indians of Brazil. Social Biology 18, 148157.CrossRefGoogle ScholarPubMed
Schoen, D. J. & Brown, A. H. D. (1991). Intraspecific variation in population gene diversity and effective size correlates with the mating system in plants. Proceedings of the National Academy of Sciences, USA 88, 44944497.CrossRefGoogle ScholarPubMed
Sherwin, W. S. & Brown, P. R. (1990). Problems in the estimation of the effective size of a population of the Eastern Barred bandicoot (Perameles gunnii) at Hamilton, Victoria. In Bandicoots and Bilbies (ed. Seebeck, J. H., Brown, P. R., Wallis, R. L. and Kemper, C. M.), pp. 367373. Chipping Norton, NSW: Surrey Beatty & Sons.Google Scholar
Shull, A. M. & Tipton, A. R. (1987). Effective population size of bison on the Whichita Mountains Wildlife Refuge. Conservation Biology 1, 3541.CrossRefGoogle Scholar
Simon, R. C., Mclntyre, J. D. & Hemmingsen, A. R. (1986). Family size and effective population size in a hatchery stock of Coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Science 43, 24342442.CrossRefGoogle Scholar
Sinclair, A. R. E. (1995). Mammal populations: fluctuation, regulation and conservation. In Frontiers of Population Ecology (ed. Floyd, R., Shepherd, A. and Lawrence, L.). (in press) Canberra, ACT: CSIRO Publications.Google Scholar
Smith, J. L. D. & McDougal, C. (1991). The contribution of variance in lifetime reproduction to effective population size in tigers. Conservation Biology 5, 484490.CrossRefGoogle Scholar
Spiess, E. B. (1989). Genes in Populations (2nd ed.). New York, Wiley.Google Scholar
Taylor, A. C., Sherwin, W. B. & Wayne, R. K. (1994). Genetic variation of microsatellite loci in a bottlenecked species: the northern hairy-nosed wombat Lasiorhinus krefftii. Molecular Ecology 3, 277290.CrossRefGoogle Scholar
Templeton, A. R. & Read, B. (1994). Inbreeding: One word, several meanings, much confusion. In Conservation Genetics (ed. Loeschcke, V., Tomiuk, J. and Jain, S. K.), pp. 91105. Basel: Birkhauser.CrossRefGoogle Scholar
Tinkle, D. W. (1965). Population structure and effective size of a lizard population. Evolution 18, 569573.CrossRefGoogle Scholar
Tomlinson, C., Mace, G. M., Black, J. M. & Hewston, N. (1991). Improving the management of a highly inbred species: the case of the white-winged wood duck Cairina scutulata in captivity. Wildfowl 42, 123133.Google Scholar
Wade, M. J. (1980). Effective population size: the effects of sex, genotype, and density on the mean and variance of offspring numbers in the flour beetle, Tribolium castaneum. Genetical Research 36, 110.CrossRefGoogle Scholar
Wayne, R. K., George, S. B., Gilbert, D., Collins, P. W., Kovach, S. D., Girman, D. & Lehman, N. (1991). A morphologic and genetic study of the Island fox, Urocyon littoralis. Evolution 45, 18491868.CrossRefGoogle ScholarPubMed
Wood, J. W. (1987). The genetic demography of the Gainj of Papua New Guinea. 2. Determinants of effective population size. American Naturalist 129, 165187.CrossRefGoogle Scholar
Woodworth, L. M., Montgomery, M. E., Nurthen, R. K., Briscoe, D. A. & Frankham, R. (1994). Modelling problems in conservation genetics using Drosophila: consequences of fluctuating population sizes. Molecular Ecology 3, 393400.CrossRefGoogle ScholarPubMed
Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97159.Google ScholarPubMed
Wright, S. (1938). Size of population and breeding structure in relation to evolution. Science 87, 430431.Google Scholar
Wright, S. (1939). Statistical genetics in relation to evolution. In Exposés de Biométrie et de la Statistique Biologique XIII, pp. 564. Paris: Hermann et Cie.Google Scholar
Wright, S. (1969). Evolution and the genetics of populations. Vol. 2. The theory of gene frequencies. Chicago, IL: University of Chicago Press.Google Scholar
Wright, S. (1977). Evolution and the genetics of populations. Vol. 3. Experimental Results and Evolutionary Deductions. Chicago, IL: University of Chicago Press.Google Scholar
Wright, S. (1978). Evolution and the genetics of populations, Vol. 4. Variability within and among Natural Population. Chicago, IL: University of Chicago Press.Google Scholar
Young, T. P. (1994). Natural die-offs of large mammals: Implications for conservation. Conservation Biology 8, 410418.CrossRefGoogle Scholar