Skip to main content Accessibility help
×
×
Home

The fitness consequences of P element insertion in Drosophila melanogaster

  • Walter F. Eanes (a1), Cedric Wesley (a1), Jody Hey (a1), David Houle (a1) and James W. Ajioka (a1)...
Summary

In this study we estimate the frequency at which P-element insertion events, as identified by in situ hybridization, generate lethal and mild viability mutations. The frequency of lethal mutations generated per insertion event was 0·004. Viability dropped an average of 1% per insertion event. Our results indicate that it is deletions and rearrangements resulting from the mobilization of P elements already in place and not the insertions per se that cause the drastic effects on viability and fitness observed in most studies of P–M dysgenesis-derived mutations. Elements of five other families (I, copia, 412, B104, and gypsy) were not mobilized in these crosses. Finally, we contrast the density of P elements on the X chromosome with the density on the four autosomal arms in a collection of thirty genomes from an African population. The relative number of P elements on the X chromosome is too high to be explained by either a hemizygous selection or a neutrality model. The possible reasons for the failure to detect selection are discussed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The fitness consequences of P element insertion in Drosophila melanogaster
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The fitness consequences of P element insertion in Drosophila melanogaster
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The fitness consequences of P element insertion in Drosophila melanogaster
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author.
References
Hide All
Bender, W., Akam, M., Karch, F., Beachy, P. A., Peifer, M., Spierer, P., Lewis, E. B. & Hogness, D. S. (1983). Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221, 2329.
Berg, R. L., Engels, W. R. & Kreber, R. A. (1980). Site-specific X chromosomal rearrangements from hybrid dysgenesis in Drosophila melanogaster. Science 210, 427–29.
Bingham, P. M., Kidwell, M. G. & Rubin, G. M. (1982). The molecular basis of P–M hybrid dysgenesis: the role of the P element, a.P-strain-specific transposon family. Cell 29, 9951004.
Blackman, R. K., Grimaila, R., Koehler, M. M. D. & Gelbart, W. M. (1987). Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49, 497505.
Bowman, J. T. Jr (1965). Spontaneous reversion of the white-ivory mutant of Drosophila melanogaster. Genetics 52, 10691079.
Bucheton, A., Paro, R., Sang, H. M., Pelisson, A. & Finnigan, D. A. (1983). The molecular basis of I-R dysgenesis in Drosophila melanogaster, identification, cloning, a.d properties of the I factor. Cell 38, 153163.
Campuzano, S., Carramolino, L., Cabrera, C. V., Ruiz-Gomez, M., Villares, R., Boronat, A. & Modolell, J. (1985). Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell 40, 327338.
Charlesworth, B. (1985). The population genetics of transposable elements. In Population Genetics and Molecular Evolution (ed. Ohta, T. and Aoki, K.-I.). Berlin: Springer-Verlag.
Charlesworth, B. & Charlesworth, D. (1983). The population dynamics of transposable elements. Genetical Research 42, 127.
Charlesworth, B. & Langley, C. H. (1986). The evolution of self-regulated transposition of transposable elements. Genetics 112, 359383.
Choo, J. K. & Lee, T. J. (1986). Genetic changes in a Korean population of Drosophila melanogaster. Japanese Journal of Genetics 61, 337343.
Coté, B., Bender, W., Curtis, D. & Chovnick, A. (1986). Molecular mapping of the rosy locus in Drosophila melanogaster. Genetics 112, 769783.
Demerec, M. (1937). Frequency of spontaneous mutation in certain stocks of Drosophila melanogaster. Genetics 22, 469–78.
Eanes, W. F., Hey, J. & Houle, D. (1985). Homozygous and hemizygous viability variation on the X chromosome of Drosophila melanogaster. Genetics 111, 831844.
Engels, W. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility. Genetical Research 33, 219236.
Engels, W. R. (1983). The P family of transposable elements in Drosophila. Annual Review of Genetics 17, 315344.
Engels, W. R. & Preston, C. R. (1984). Formation of chromosomal rearrangements by P factors in Drosophila. Genetics 107, 657678.
Falconer, D. S. (1981). Introduction to Quantitative Genetics. London: Longman Group.
Fitzpatrick, G. J. & Sved, J. A. (1986). High levels of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster. Genetical Research 48, 8994.
Gerasimova, T. I., Mizrokhi, L. J. & Georgiev, G. P. (1984). Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309, 714716.
Green, M. M. (1967). The genetics of a mutable gene at the white locus of Drosophila melanogaster. Genetics 56, 467482.
Gromko, M. H., Gilbert, D. G. & Richmond, R. C. (1984). Sperm transfer and use in the multiple mating system of Drosophila. In Sperm Competition and the Evolution of Mating Systems (ed. Smith, R. L.). New York: Academic Press.
Hiraizumi, Y. (1979). A model of the negative correlation between male recombination and transmission frequency in Drosophila melanogaster. Genetics 93, 449459.
Kidd, S., Lockett, T. J. & Young, M. W. (1983). The Notch locus of Drosophila melanogaster. Cell 34, 421433.
Kidwell, M. G., Kidwell, J. F. & Nei, M. (1973). A case of high rate of spontaneous mutation affecting viability in Drosophila melanogaster. Genetics 75, 133153.
Langer, P. R., Waldrop, A. A. & Ward, D. C. (1981). Enzymatic synthesis of biotin-labeled polynucleotides. Proceedings of the National Academy of Sciences, USA 78, 66336637.
Lefevre, G. & Watkins, W. (1986). The question of total gene number in Drosophila melanogaster. Genetics 113, 869895.
Lewin, B. (1980). Gene Expression, vol. 2. New York: John Wiley & Sons.
Lindsley, D. L., Sandier, L., Baker, B. S., Carpenter, A. T. C., Denell, R. E., Hall, J. C., Jacobs, P. A., Miklos, L. G., Davis, B. K., Gethmana, R. C., Hardy, R. W., Hessler, A., Miller, S. M., Nozawa, H., Parry, D. M. & Gould-Somero, M. (1972). Segmental aneuploidy and the gross genetic structure of the Drosophila genome. Genetics 71, 157184.
McClintock, B. (1956 a). Intranuclear systems controlling gene action and mutation. Brookhaven Symposia in Biology 8, 5874.
McClintock, B. (1956 b). Controlling elements and the gene. Cold Spring Harbor Symposia on Quantitative Biology 21, 197216.
Mackay, T. F. (1986). Transposable element-induced fitness mutations in Drosophila melanogaster. Genetical Research 48, 7787.
Montgomery, E. A., Charlesworth, B. & Langley, C. H. (1987). A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genetical Research 49, 3141.
Mukai, T. (1964). The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50, 119.
Mukai, T. (1969). The genetic structure of natural populations of Drosophila melanogaster. VII. Synergistic interaction of spontaneous mutant polygenes controlling viability. Genetics 61, 749761.
Mukai, T., Baba, M., Akiyama, M., Uowaki, N., Kusakaba, S. & Tajima, F. (1985). Rapid change in mutation rate in a local population of Drosophila melanogaster. Proceedings of the National Academy of Sciences, U.S.A. 82, 76717675.
Mukai, T., Chigusa, S. I., Mettler, L. E. & Crow, J. F. (1972). Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72, 335355.
Mukai, T. & Yukuhiro, K. (1983). An extremely high rate of deleterious viability mutations in Drosophila possibly caused by transposons in non-coding regions. Japanese Journal of Genetics 59, 316319.
Neel, J. V. (1942). A study of a case of high mutation rate in Drosophila melanogaster. Genetics 27, 519536.
O'Hare, K. & Rubin, M. (1983). Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 24, 2535.
Pardue, M. L. & Gall, J. G. (1975). Nucleic acid hybridization to the DNA of cytological preparations. Methods in Cell Biology 10, 117.
Provine, W. B. (1971). The Origins of Theoretical Population Genetics. Chicago: University of Chicago Press.
Scott, M. P., Weiner, A. J., Hazelrigg, T. I., Polisky, B. A., Pirrotta, V., Scalenghe, F. & Kaufman, T. C. (1983). The molecular organization of the Antennapedia locus in Drosophila. Cell 35, 763776.
Shapiro, J. A. (1983). Mobile Genetic Elements. Orlando: Academic Press.
Simmons, M. J. & Crow, J. F. (1977). Mutations affecting fitness in Drosophila populations. Annual Review of Genetics 11, 4978.
Simmons, M. J. & Lim, J. K. (1980). Site specificity of mutations arising in dysgenic hybrids of Drosophila melanogaster. Proceedings of the National Academy of Sciences, U.S.A. 77, 60426046.
Simmons, M. J., Raymond, J. D., Culbert, P. & Laverty, T. R. (1984 a). Analysis of dysgenesis induced lethal mutations on the X chromosome of a Q strain of Drosophila melanogaster. Genetics 107, 4963.
Simmons, M. J., Raymond, J. D., Johnson, N. A. & Fahey, T. M. (1984 b). A comparison of mutation rates for specific loci and chromosome regions in dysgenic hybrid males of Drosophila melanogaster. Genetics 106, 8594.
Simmons, M. J., Raymond, J. D., Laverty, T. R., Doll, R. F., Raymond, N. C., Kocur, G. J. & Drier, E. A. (1985). Chromosomal effects of mutability in the P-M system of hybrid dysgenesis in Drosophila melanogaster. Genetics 111, 869884.
Strobel, E., Dunsmuir, P. & Rubin, G. M. (1979). Polymorphism in the chromosomal locations of elements of the 412, copia, and 297 dispersed repeated gene families in Drosophila. Cell 17, 429439.
Sved, J. A. (1971). An estimate of heterosis in Drosophila melanogaster. Genetical Research. 18, 97105.
Yannopoulos, G., Stamatis, N., Monastirioti, M., Hatzo-poulos, P., & Louis, C. (1987). Hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5MRF. Cell 49, 487495.
Yukuhiro, K., Harada, K. & Mukai, T. (1985). Viability mutations induced by P elements in Drosophila melanogaster. Japanese Journal of Genetics 60, 531537.
Yukuhiro, K. & Mukai, T. (1986). Increased detrimental load possibly caused by a transposon in a local population of Drosophila melanogaster. Japanese Journal of Genetics 61, 2543.
Young, M. W. (1979). Middle repetitive DNA: a fluid component of the Drosophila genome. Proceedings of the Natioinal Academy of Sciences, USA 76, 62746278.
Zachar, Z. & Bingham, P. M. (1982). Regulation of white locus expression: the structure of mutant alleles at the white locus of Drosophila melanogaster. Cell 30, 529541.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed