Skip to main content Accessibility help
×
Home

Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method

  • Rumi Kondo (a1), Etsuko T. Matsuura (a1) and Sadao I. Chigusa (a1)

Summary

By designing 3′ ends of primers in PCR (polymerase chain reaction), a specific DNA fragment was selectively amplified in the presence of a 103-fold excess of highly homologous (sequence difference ca. 2 %) opponent DNA. This technique was applied in detecting paternal leakage of mitochondrial DNA (mtDNA) in intraspecific crosses of Drosophila simulans and interspecific crosses of Drosophila simulans and Drosophila mauritiana. The mtDNA types of their progeny were analysed by selective amplification of the paternal mtDNA fragment possessing a polymorphic restriction site and detecting its cleaved fragments. Paternal mtDNA was detected in the progeny of 14 out of 16 crosses. The present result indicates small but frequent inheritance of sperm mtDNA in Drosophila, which is supportive to our previous finding.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method
      Available formats
      ×

Copyright

Corresponding author

Corresponding author.

References

Hide All
Birky, C. W. Jr (1983). Relaxed cellular controls and organelle heredity. Science 222, 468475.
Chapman, R. W., Stephens, J. C., Lansman, R. A. & Avise, J. C. (1982). Models of mitochondrial DNA transmission genetics and evolution in higher eucaryotes. Genetical Research 40, 4157.
Clary, D. O. & Wolstenholme, D. R. (1985). The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. Journal of Molecular Evolution 22, 252271.
Gibbs, R. A., Nguyen, P.-N & Caskey, C. T. (1989). Detection of single DNA base differences by competitive oligonucleotide priming. Nucleic Acids Research 17, 2437.
Gyllensten, U., Wharton, D., Josefsson, A. & Wilson, A. C. (1991). Paternal inheritance of mitochondrial DNA in mice. Nature 352, 255257.
Hoeh, W. R., Blakley, K. H. & Brown, W. M. (1991). Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science 251, 14881490.
Innis, M. A. & Gelfand, D. H. (1990). Optimization of PCRs. In PCR protocols, (ed. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.), pp. 312. San Diego: Academic Press.
Kondo, R., Satta, Y., Matsuura, E. T., Ishiwa, H., Takahata, N. & Chigusa, S. I. (1990). Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126, 657663.
Kaneko, S., Miller, R. H., Feinstone, S. M., Unoura, M., Kobayashi, K., Hattori, N. & Purcell, R. H. (1989). Detection of serum hepatitis B virus DNA in patients with chronic hepatitis using the polymerase chain reaction assay. Proceedings of the National Academy of Sciences, USA 86, 312316.
Matsuura, E. T., Fukuda, H. & Chigusa, S. I. (1991 a). Mitochondrial DNA heteroplasmy maintained in natural populations of Drosophila simulans in Réunion. Genetical Research 57, 123126.
Matsuura, E. T., Niki, Y. & Chigusa, S. I. (1991 b). Selective transmission of mitochondrial DNA in heteroplasmic lines for intra-and interspecific combinations in Drosophila melanogaster. The Japanese Journal of Genetics 66, 197207.
Mirfakhrai, M., Tanaka, Y. & Yanagisawa, K. (1990). Evidence for mitochondrial DNA polymorphism and uniparental inheritance in the cellular slime mould Polysphondylium pallidum: effect of intraspecies mating on mitochondrial DNA transmission. Genetics 124, 607613.
Neale, D. B., Marshall, K. A. & Sederoff, R. R. (1990). Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl. Proceedings of the National Academy of Sciences, USA 86, 93479349.
Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. & Arnheim, N. (1985). Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 13501354.
Satta, Y. & Takahata, N. (1990). Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup. Proceedings of the National Academy of Sciences, USA 87, 95589562.
Solignac, M., Monnerot, M. & Mounolou, J.-C. (1986). Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. Journal of Molecular Evolution 23, 3139.
Sommer, R. & Tautz, D. (1989). Minimal homology requirements for PCR primers. Nucleic Acids Research 17, 6749.
Takahata, N. & Maruyama, T. (1981). A mathematical model of extranuclear genes and the genetic variability maintained in the finite population. Genetical Research 37, 291302.
Wu, D. Y., Ugozzoli, L., Pal, B. K. & Wallace, R. B. (1989) Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proceedings of the National Academy of Sciences, USA 86, 2757.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed