Skip to main content Accessibility help

Genetic analysis of environmental variation

  • WILLIAM G. HILL (a1) and HAN A. MULDER (a2)


Environmental variation (VE) in a quantitative trait – variation in phenotype that cannot be explained by genetic variation or identifiable genetic differences – can be regarded as being under some degree of genetic control. Such variation may be either between repeated expressions of the same trait within individuals (e.g. for bilateral traits), in the phenotype of different individuals, where variation within families may differ, or in both components. We consider alternative models for defining the distribution of phenotypes to include a component due to heterogeneity of VE. We review evidence for the presence of genetic variation in VE and estimates of its magnitude. Typically the heritability of VE is under 10%, but its genetic coefficient of variation is typically 20% or more. We consider experimental designs appropriate for estimating genetic variance in VE and review alternative methods of estimation. We consider the effects of stabilizing and directional selection on VE and review both the forces that might be maintaining levels of VE and heritability found in populations. We also evaluate the opportunities for reducing VE in breeding programmes. Although empirical and theoretical studies have increased our understanding of genetic control of environmental variance, many issues remain unresolved.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic analysis of environmental variation
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic analysis of environmental variation
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic analysis of environmental variation
      Available formats


Corresponding author

*Corresponding author: Tel: +44(0)131 650 5705. Fax: +44(0)131 650 6564. e-mail:


Hide All
Ansel, J., Bottin, H., Rodriguez-Beltran, C., Damon, C., Nagarajan, M., Fehrmann, S., Francois, J. & Yueot, G. (2008). Cell-to-cell stochastic variation in gene expression is a complex genetic trait. Public Library of Science Genetics 4, e1000049.
Argente, M. J., Garcia, M. L., Muelas, R., Santacreu, M. A. & Blasco, A. (2010). Preliminary results in a divergent selection experiment on variance for litter size in rabbits. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany. Communication 0526.
Baer, C. F. (2008). Quantifying the de-canalizing effects of spontaneous mutations in rhabditid nematodes. American Naturalist 172, 272281.
Bodin, L., Bolet, G., Garcia, M., Garreau, H., Larzul, C. & David, I. (2010). Robustesse et canalisation: vision de généticiens. INRA Production Animales 23, 1122.
Bürger, R. (2000). The Mathematical Theory of Selection, Recombination, and Mutation. New York: Wiley.
Bull, J. J. (1987). Evolution of phenotypic variance. Evolution 41, 303315.
Canario, L., Lundgren, H., Haandlykken, M. & Rydhmer, L. (2010). Genetics of growth in piglets and the association with homogeneity of body weight within litters. Journal of Animal Science 88, 12401247.
Cardin, S. & Minvielle, F. (1986). Selection on phenotypic variation of pupa weight in Tribolium castaneum. Canadian Journal of Genetics and Cytology 28, 856861.
Cardoso, F. F., Rosa, G. J. M. & Tempelman, R. J. (2005). Multiple-breed genetic inference using heavy-tailed structural models for heterogeneous residual variances. Journal of Animal Science 83, 17661779.
Clay, J. S., Vinson, W. E. & White, J. M. (1979). Heterogeneity of daughter variances of sires for milk yield. Journal of Dairy Science 62, 985989.
Clayton, G. A. & Robertson, A. (1957). An experimental check on quantitative genetic theory. 2. The long-term effects of selection. Journal of Genetics 55, 152170.
Damgaard, L. H., Rydhmer, L., Løvendahl, P. & Grandinson, K. (2003). Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. Journal of Animal Science 81, 604610.
Deveaux, C. & Lande, R. (2010). Selection on variance in flowering time within and among individuals. Evolution 64, 13111320.
Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, 4th edn. Essex: Pearson Education Limited.
Falconer, D. S. & Robertson, A. (1956). Selection for environmental variability of body size in mice. Zeitschrift fur Inductive Abstammungs- and Vererbungslehre 87, 385391.
Finlay, K. W. & Wilkinson, G. N. (1963). The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research 14, 742754.
Foulley, J. L. & Quaas, R. L. (1995). Heterogeneous variances in Gaussian linear mixed models. Genetics, Selection, Evolution 26, 117136.
Foulley, J. L., Quaas, R. L. & Thaon d'Arnoldi, C. (1998). A link function approach to heterogeneous variance components, Genetics, Selection, Evolution 30, 2743.
Fry, J. D., deRonde, K. A. & Mackay, T. F. C. (1995). Polygenic mutation in Drosophila melanogaster: genetic analysis of selection lines. Genetics 139, 12931307.
Fuller, R. C. & Houle, D. (2003). Inheritance of developmental instability. In Developmental Instability: Causes and Consequences (ed. Polak, M.), pp. 157183. Cambridge: Cambridge University Press.
Gangestad, S. W. & Thornhill, R. (1999). Individual differences in developmental precision and fluctuating asymmetry: a model and its implications. Journal of Evolutionary Biology 12, 402416.
Garcia, M., David, I., Garreau, H., Ibañez-Escriche, N., Mallard, J., Masson, J. P., Pommeret, D., Robert-Granié, C. & Bodin, L. (2009). Comparisons of three models for canalising selection or genetic robustness. In 60th Annual Meeting of European Association for Animal Production, Barcelona, Spain, August 2009, Abstracts, p. 599.
Garreau, H., Bolet, G., Larzul, C., Robert-Granie, C., Saleil, G., SanCristobal, M. & Bodin, L. (2008). Results of four generations of a canalising selection for rabbit birth weight. Livestock Science 119, 5562.
Gavrilets, S. & Hastings, A. (1994). A quantitative-genetic model for selection on developmental noise. Evolution 48, 14781486.
Gilmour, A. R., Gogel, B. J., Cullis, B. R. & Thompson, R. (2006). ASREML User Guide Release 2.0. Hemel Hempstead: VSN International.
Gimelfarb, A. (1994). Additive–multiplicative approximation of genotype–environment interaction. Genetics 138, 13391349.
Gutierrez, J. P.Nieto, B., Piqueras, P., Ibáñez, N., & Salgado, C. (2006). Genetic parameters for canalisation analysis of litter size and litter weight traits at birth in mice. Genetics, Selection, Evolution 38, 445462.
Hill, W. G. (2004). Heterogeneity of genetic and environmental variance of quantitative traits. Journal of the Indian Society of Agricultural Statistics 57, 4963.
Hill, W. G. (2010). Understanding and using quantitative genetic variation. Philosophical Transactions of the Royal Society B 365, 7385.
Hill, W. G. & Zhang, X.-S. (2004). Effects on phenotypic variability of directional selection arising through genetic differences in residual variability. Genetical Research 83, 121132 (Erratum 83, 160).
Hoaglin, D. C. & Welsch, R. E. (1978). The hat matrix in regression and ANOVA. American Statistician 32, 1722.
Houle, D. (1992). Comparing evolvability and variability of quantitative traits. Genetics 130, 195204.
Ibáñez-Escriche, N., Garcia, M. & Sorensen, D. (2010). GSEVM v.2: MCMC software to analyze genetically structured environmental variance models. Journal of Animal Breeding and Genetics 127, 249251.
Ibáñez-Escriche, N., Moreno, A., Nieto, B., Piquears, P., Salgado, C. & Gutierrez, J. P. (2008 a). Genetic parameters related to environmental variability of weight traits in a selection experiment for weight gain in mice; signs of correlated canalised response. Genetics, Selection, Evolution 40, 279293.
Ibáñez-Escriche, N., Sorensen, D., Waagepetersen, R. & Blasco, A. (2008 b). Selection for environmental variance: a statistical analysis and power calculations to detect response. Genetics 180, 22092226.
Ibáñez-Escriche, N., Varona, L., Sorensen, D. & Noquera, J. L. (2008 c). A study of heterogeneity of environmental variance for slaughter weight in pigs. Animal 2, 1926.
Johnson, T. & Barton, N. H. (2005). Theoretical models of selection and mutation on quantitative traits. Philosophical Transactions of the Royal Society B 360, 14111425.
Johnson, W., Gangestad, S. W., Segal, N. L. & Bouchard, T. J. Jr ( 2008). Heritability of fluctuating asymmetry in a human twin sample: the effect of trait aggregation. American Journal of Human Biology 20, 651658.
Kaufman, P. K., Enfield, F. D. & Comstock, R. E. (1977). Stabilizing selection for pupa weight in Tribolium castaneum. Genetics 87, 327341.
Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. E., Hoang, A., Gibert, P. & Beerli, P. (2001). The strength of phenotypic selection in natural populations. American Naturalist 157, 245261.
Larzul, C., Le Roy, P., Tribout, T., Gogue, J. & SanCristobal, M. (2006). Canalizing selection on ultimate PH in pigs: consequences on meat quality. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brasil. Communication 13–09.
Leamy, L. J. & Klingenberg, C. P. (2005). The genetics and evolution of fluctuating asymmetry. Annual Review of Ecology, Evolution, and Systematics 36, 121.
Lerner, I. M. (1954). Genetic Homeostasis. Edinburgh, UK: Oliver & Boyd.
Lynch, M. & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates.
Mackay, T. F. C. & Lyman, R. F. (2005). Drosophila bristles and the nature of quantitative genetic variation. Philosophical Transactions of the Royal Society B 360, 15131527.
Møller, A. P. & Thornhill, R. (1997). A meta-analysis of the heritability of developmental stability. Journal of Evolutionary Biology 10, 116.
Mulder, H. A. (2007). Methods to optimize livestock breeding programs with genotype by environment interaction and genetic heterogeneity of environmental variance. PhD thesis, Wageningen University, The Netherlands.
Mulder, H. A., Bijma, P. & Hill, W. G. (2007). Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance. Genetics 175, 18951910.
Mulder, H. A., Bijma, P. & Hill, W. G. (2008). Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance. Genetics, Selection, Evolution 40, 3759.
Mulder, H. A., Hill, W. G., Vereijken, A. & Veerkamp, R. F. (2009). Estimation of genetic variation in residual variance in female and male broilers. Animal 3, 16731680.
Ordas, B., Malvar, R. A. & Hill, W. G. (2008). Genetic variation and quantitative trait loci associated with developmental stability and the environmental correlations between traits in maize. Genetical Research 90, 385395.
Price, G. R. (1970). Selection and covariance. Nature 227, 520521.
Rendel, J. M., Sheldon, B. L. & Finlay, D. E. (1966). Selection for canalization of the scute phenotype. II. American Naturalist 100, 1331.
Robertson, A. (1959). Experimental design in the evaluation of genetic parameters. Biometrics 15, 219226.
Rönnegård, L., Felleki, M., Fikse, F., Mulder, H. A. & Strandberg, E. (2010). Genetic heterogeneity of residual variance – estimation of variance components using double hierarchical generalized linear models. Genetics, Selection, Evolution 42, 8.
Ros, M., Sorensen, D., Waagepetersen, R., Dupont-Nivet, M., SanCristobal, M., Bonnet, J. C. & Mallard, J. (2004). Evidence for genetic control of adult weight plasticity in the snail Helix aspersa. Genetics 168, 20892097.
Rosa, G. J. M., Padovani, C. R. & Gianola, D. (2003). Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation. Biometrical Journal 45, 573590.
Rowe, S. J., White, I. M. S., Avendano, S. & Hill, W. G. (2006). Genetic heterogeneity of residual variance in broiler chickens. Genetics, Selection, Evolution 38, 617635.
SanCristobal-Gaudy, M., Bodin, L., Elsen, J. M. & Chevalet, C. (2001). Genetic components of litter size variability in sheep. Genetics, Selection, Evolution 33, 249271.
SanCristobal-Gaudy, M., Elsen, J.-M., Bodin, L. & Chevalet, C. (1998). Prediction of the response to selection for canalization of a continuous trait in animal breeding. Genetics, Selection, Evolution 39, 423451.
Scharloo, W., Zweep, A., Schuitema, K. A. & Wijnstra, J. G. (1972). Stabilizing and disruptive selection on a mutant character in Drosophila. IV. Selection on sensitivity to temperature. Genetics 71, 551566.
Slatkin, M. & Lande, R. (1976). Niche width in a fluctuating environment – density independent model. American Naturalist 110, 3155.
Sorensen, A. C., Kristensen, T. N., Loeschcke, V., Ibáñez, N. & Sorensen, D. (2007). Genetically controlled environmental variance for sternopleural bristles in Drosophila melanogaster – an experimental test of a heterogeneous variance model. Acta Agriculturae Scandinavica, Section A, Animal Science 57, 196201.
Sorensen, D. A. (2009). Developments in statistical analysis in quantitative genetics. Genetica 136, 319332.
Sorensen, D. A. & Hill, W. G. (1983). Effects of disruptive selection on genetic variance. Theoretical and Applied Genetics 65, 173180.
Sorensen, D. & Waagepetersen, R. (2003). Normal linear models with genetically structured residual variance heterogeneity: a case study. Genetical Research 82, 207222.
Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution 16, 125142.
Van Vleck, L. D. (1968). Variation of milk records within paternal-sib groups. Journal of Dairy Science 51, 14651470.
Visscher, P. M. & Posthuma, D. (2010). Statistical power to detect genetic loci affecting environmental sensitivity. Behavior Genetics 40, 728733.
Waagepetersen, R., Ibáñez-Escriche, N. & Sorensen, D. (2008). A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics. Genetics, Selection, Evolution 40, 161176.
Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature 150, 563565.
Wagner, G. P., Booth, G. & Bagheri-Chaichian, H. (1997). A population genetic theory of canalization. Evolution 51, 329347.
Walsh, B. & Lynch, M. (2010). Evolution and Selection of Quantitative Traits: I. Foundations. Available at, Chapter 13.
Whitlock, M. C. & Fowler, K. (1999). The changes in genetic and environmental variance with inbreeding in Drosophila melanogaster. Genetics 152, 345353.
Wittenburg, D., Guiard, V., Teuscher, F. & Reinsch, N. (2008). Comparison of statistical models to analyse the genetic effect on within-litter variance in pigs. Animal 2, 15591568.
Wolc, A., White, I. M. S., Avendano, S. & Hill, W. G. (2009). Genetic variability in residual variation of body weight and conformation scores in broiler chickens. Poultry Science 88, 11561161.
Wu, R. L. & O'Malley, D. M. (1998). Nonlinear genotypic response to macro- and micro-environments. Theoretical and Applied Genetics 96, 669675.
Yang, Y. (2010) The genetics of environmental variation. PhD thesis, Aarhus University, Denmark.
Yang, Y., Christensen, O. & Sorensen, D. A. (2010). Analysis of a genetically structured variance heterogeneity model using the Box–Cox transformation. Genetics Research (in press).
Zhang, X.-S. (2005). Evolution and maintenance of the environmental component of the phenotypic variance: benefit of plastic traits under changing environments. American Naturalist 166, 569580.
Zhang, X.-S. (2006). The phenotypic variance within plastic traits under migration–mutation–selection balance. Evolution 60, 11251136.
Zhang, X.-S. & Hill, W. G. (2005 a). Genetic variability under mutation selection balance. Trends in Ecology and Evolution 20, 468470.
Zhang, X.-S. & Hill, W. G. (2005 b). Evolution of the environmental component of the phenotypic variance: stabilizing selection in changing environments and the homogeneity cost. Evolution 59, 12371244.
Zhang, X.-S. & Hill, W. G. (2007). Competition can maintain genetic but not environmental variance in the presence of stabilizing selection. Evolution 61, 15321545.
Zhang, X.-S. & Hill, W. G. (2008). Mutation–selection balance for environmental variance. American Naturalist 171, 394399.
Zhang, X.-S. & Hill, W. G. (2010). Change and maintenance of variation in quantitative traits in the context of the Price equation. Theoretical Population Biology 77, 1422.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed