Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-30T05:54:21.811Z Has data issue: false hasContentIssue false

A genetic linkage map for the domesticated silkworm, Bombyx mori, based on restriction fragment length polymorphisms

Published online by Cambridge University Press:  14 April 2009

Jinrui Shi
Affiliation:
Department of Zoology, University of Rhode Island, Kingston, RI 02881-0816, USA
David G. Heckel
Affiliation:
Department of Biological Sciences, Clemson University, Clemson, SC 29634-1903, USA
Marian R. Goldsmith
Affiliation:
Department of Zoology, University of Rhode Island, Kingston, RI 02881-0816, USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present data for the initial construction of a molecular linkage map for the domesticated silkworm, Bombyx mori, based on 52 progeny from an F2 cross from a pair mating of inbred strains p50 and C108, using restriction fragment length polymorphisms (RFLPs). The map contains 15 characterized single copy sequences, 36 anonymous sequences derived from a follicular cDNA library, and 10 loci corresponding to a low copy number retrotransposon, mag. The 15 linkage groups and 8 ungrouped loci account for 23 of the 28 chromosomes and span a total recombination length of 413 cM; 10 linkage groups were correlated with established classic genetic maps. Scoring data from Southern blots were analysed using two Pascal programs written specifically to analyse linkage data in Lepidoptera, where females are the heterogametic sex and have achiasmatic meiosis (no crossing-over). These first examine evidence for linkage by calculating the maximum lod score under the hypothesis that the two loci are linked over the likelihood under the hypothesis that the two loci assort independently, and then determine multilocus linkage maps for groups of putatively syntenic loci by calculating the maximum likelihood estimate of the recombination fractions and the log likelihood using the EM algorithm for a specified order of loci along the chromosome. In addition, the possibility of spurious linkage was exhaustively tested by searching for genotypes forbidden by the absence of crossing-over in one sex.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

Adams, D. S., Eickbush, T. H., Herrera, R. J. & Lizardi, P. M. (1986). A highly reiterated family of transcribed oligo (A)-terminated, interspersed DNA elements in the genome of Bombyx mori. Journal of Molecular Biology 187, 465478.CrossRefGoogle ScholarPubMed
Bhaskar, R. N., Govindan, R. & Devaiah, M. C. (1989). Sensitiveness of some breeds of silkworm Bombyx mori L. to Kenchu virus disease on larval weight reduction. Sericologia 29, 127131.Google Scholar
Birnboim, H. C. & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 15131523.CrossRefGoogle ScholarPubMed
Coutagne, G. (1902). Recherches expérimentales sur l'hérédité chez les vers à soie. Bulletin Scientifique de la France et de la Belgique 37, 1194.Google Scholar
Datta, R. K. & Pershad, G. D. (1988). Combining ability among multivoltine by bivoltine silkworm (Bombyx mori L.) hybrids. Sericologia 28, 2129.Google Scholar
Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, series B 39, 138.Google Scholar
Devey, M. E., Fiddler, T. A., Liu, B.-H., Knapp, S. J. & Neale, D. B. (1994). An RFLP linkage map for loblolly pine based on a three-generation outbred pedigree. Theoretical and Applied Genetics 88, 273278.CrossRefGoogle ScholarPubMed
Doira, H. (1978). Genetic stocks of the silkworm. In The Silkworm: An Important Laboratory Tool(ed. Tazima, Y.), pp. 5381. Tokyo: Kodansha.Google Scholar
Doira, H. (1992). Genetical stocks and mutations of Bombyx mori: important genetic resources. Linkage maps and list of genetical stocks maintained in Kyushu University. Institute of Genetic Resources, Kyushu University.Google Scholar
Durrant, I., Benge, L. C. A., Sturrock, C., Devenish, A. T., Howe, R., Roe, S., Moore, M., Scozzafava, G., Proudfft, L. M. F., Richardson, T. C. & McFarthing, K. G. (1990). The application of enhanced chemiluminescence to membrane-based nucleic acid detection. BioTechniques 8, 564570.Google ScholarPubMed
Edwards, M. D., Stuber, C. W. & Wendel, J. F. (1978). Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution, and types of gene action. Genetics 116, 113125.CrossRefGoogle Scholar
Eguchi, R., Furuta, Y. & Ninaki, O. (1986). Dominant nonsusceptibility to densonucleosis virus in the silkworm, Bombyx mori. Journal of Sericultural Science of Japan 55, 177178.Google Scholar
Eickbush, T. H. (1995). Mobile elements of lepidopteran genomes. In Molecular Model Systems in the Lepidoptera (ed. Goldsmith, M. R. and Wilkins, A. S.), pp. 77105. New York: Cambridge University Press.CrossRefGoogle Scholar
Eickbush, T. H. & Izzo, J. A. (1995). Chorion genes: molecular models of evolution. In Molecular Model Systems in the Lepidoptera (ed. Goldsmith, M. R. and Wilkins, A. S.), pp. 217247. New York: Cambridge University Press.CrossRefGoogle Scholar
Eickbush, T. H. & Robins, B. (1985). Bombyx mori 28S genes contain insertion elements similar to the type I and II elements of Drosophila melanogaster. EMBO Journal 4, 22812285.CrossRefGoogle Scholar
Figdore, S. S., Kennard, W. C., Song, K. M., Slocum, M. K. & Osborn, T. C. (1988). Assessment of the degree of restriction fragment length polymorphism in Brassica. Theoretical and Applied Genetics 75, 833840.CrossRefGoogle Scholar
Friedländer, M. & Wahrman, J. (1970). The spindle as a basal body distributor. A study in the meiosis of the male silkworm moth, Bombyx mori. Journal of Cell Science 7, 6589.CrossRefGoogle ScholarPubMed
Fujii, T., Sakurai, H., Izumi, S. & Tomino, S. (1989). Structure of the gene for the arylphorin-type storage protein SP2 of Bombyx mori. Journal of Biological Chemistry 264, 1102011025.CrossRefGoogle Scholar
Fujikawa, K., Kawaguchi, Y., Banno, Y., Akagi, S. & Koga, K. (1993). Characteristics of the vit mutant egg in Bombyx mori. Journal of Sericultural Science of Japan 62, 286291.Google Scholar
Fujiwara, H., Ogura, T., Takada, N., Miyajima, N., Ishikawa, H. & Maekawa, H. (1984). Introns and their flanking sequences of Bombyx mori rDNA. Nucleic Acids Research 12, 68616869.CrossRefGoogle ScholarPubMed
Gage, L. P. (1974). Polyploidization of the silk gland of Bombyx mori. Journal of Molecular Biology 86, 97108.CrossRefGoogle ScholarPubMed
Gamo, T. (1982). Genetic variants of the Bombyx mori silkworm encoding sericin proteins of different lengths. Biochemical Genetics 20, 165177.CrossRefGoogle ScholarPubMed
Garel, A., Nony, P. & Prudhomme, J. C. (1994). Structural features of mag, a gypsy-like retrotransposon of Bombyx mori, with unusual short terminal repeats. Genetica 93, 125137.CrossRefGoogle ScholarPubMed
Gautreau, D., Zetlan, S. R., Mazur, G. D. & Goldsmith, M. R. (1993). A subtle defect underlies a major alteration in lamellar orientation in the Gr16 chorion mutant of Bombyx mori. Developmental Biology 157, 6072.CrossRefGoogle Scholar
Goldsmith, M. R. (1989). Organization and developmental timing of the Bombyx mori chorion gene clusters in strain C108. Developmental Genetics 10, 1623.CrossRefGoogle Scholar
Goldsmith, M. R. (1995). Genetics of the silkworm: revisiting an ancient model system. In Molecular Model Systems in the Lepidoptera (ed. Goldsmith, M. R. and Wilkins, A. S.), pp. 2176. New York: Cambridge University Press.CrossRefGoogle Scholar
Goldsmith, M. R. & Wilkins, A. S. eds. (1995). Molecular Model Systems in the Lepidoptera. New York: Cambridge University Press.CrossRefGoogle Scholar
Hara, W., Suzuki, Y. & Doira, H. (1991). Gene mapping of the Bombyx Antennapedia by classical and molecular genetics. Sericologia 31 (Suppl), 90.Google Scholar
Heckel, D. G. (1993). Comparative genetic linkage mapping in insects. Annual Review of Entomology 38, 381408.CrossRefGoogle Scholar
Hospital, F., Chevalet, C. & Mulsant, P. (1992). Using markers in gene introgression breeding programs. Genetics 132, 11991210.CrossRefGoogle ScholarPubMed
Ishikawa, E. & Suzuki, Y. (1985). Tissue-and stage-specific expression of sericin genes in the middle silk gland of Bombyx mori. Development, Growth and Differentiation 27, 7382.Google ScholarPubMed
Kafatos, F. C., Tzertzinis, G., Spoerel, N. A. & Nguyen, H. T. (1995). Chorion genes: an overview of their structure, function and transcriptional regulation. In Molecular Model Systems in the Lepidoptera (ed. Goldsmith, M. R. and Wilkins, A. S.), pp. 181247. New York: Cambridge University Press.CrossRefGoogle Scholar
Kanda, T., Tamura, T. & Inoue, H. (1988). Feeding response of the silkworm larva to the LP-1 artificial diet designed by a linear programming method and its inheritance. Journal of Sericultural Science of Japan 57, 489494. In Japanese with English summary.Google Scholar
Kawaguchi, Y. & Doira, H. (1973). Gene-controlled incorporation of haemolymph protein into the ovaries of Bombyx mori. Journal of Insect Physiology 19, 20832096.CrossRefGoogle Scholar
Kawaguchi, Y., Doira, H., Banno, Y. & Fujii, H. (1990). Ovary-dependent genetic determination of the egg shape and the yolk protein in the small-egg 2 mutant of Bombyx mori. Sericologia 30, 489498.Google Scholar
Kawaguchi, Y. & Fujii, H. (1984). Ovarian protein of sm" mutant in Bombyx mori. Journal of Sericultural Science of Japan 53, 448–445. In Japanese with English summary.Google Scholar
Kawaguchi, Y., Shito, K., Fujii, H. & Doira, H. (1987). Manifestation of ‘Giant egg’ mutant of Bombyx mori (Lepidoptera: Bombycidae). 1. Characteristics of the Ge egg. Japanese Journal of Applied Entomology and Zoology 31, 344349.CrossRefGoogle Scholar
Kawaguchi, Y., Tsunenari, N., Banno, Y., Koga, K., Doira, H. & Fujii, H. (1993). Manifestation of the ‘miniature egg’ mutant of Bombyx mori. Characteristics of the emi egg. Journal of Sericultural Science of Japan 62, 485488.Google Scholar
Keim, P., Diers, B. W., Olson, T. C. & Shoemaker, R. C. (1990). RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126, 735742.CrossRefGoogle ScholarPubMed
Kesseli, R. V., Paran, I. & Michelmore, R. W. (1994). Analysis of a detailed genetic linkage map of Lactuca saliva (lettuce) constructed from RFLP and RAPD markers. Genetics 136, 14351446.CrossRefGoogle Scholar
Kikuchi, Y., Mori, K., Suzuki, S., Yamaguchi, Y. & Mizuno, S. (1992). Structure of the Bombyx mori fibroin light-chain-encoding gene: upstream sequence elements common to the light and heavy chain. Gene 110, 151158.CrossRefGoogle Scholar
Kremky, T. & Michalska, E. (1988). Resistance of some mulberry silkworm lines to polyhedrosis. Sericologia 28, 6170.Google Scholar
Lande, R. & Thompson, R. (1990). Efficiency of marker assisted selection in the improvement of quantitative traits. Genetics 124, 743756.CrossRefGoogle ScholarPubMed
Lander, E. S. & Botstein, D. (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185199.CrossRefGoogle ScholarPubMed
Lander, E. S. & Green, P. (1987). Construction of multilocus genetic linkage maps in humans. Proceedings of the National Academy of Sciences, U.S.A. 84, 23632367.CrossRefGoogle ScholarPubMed
Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E. & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174181.CrossRefGoogle ScholarPubMed
Lecanidou, R., Eickbush, T. H. & Kafatos, F. C. (1984). Ribosomal DNA genes of Bombyx mori: a minor repeating fraction of the repeating units contains insertions. Nucleic Acids Research 12, 47034713.CrossRefGoogle ScholarPubMed
Lecanidou, R., Rodakis, G. C., Eickbush, T. H. & Kafatos, F. C. (1986). Evolution of the silkmoth chorion gene superfamily: gene families CA and CB. Proceedings of the National Academy of Sciences, U.S.A. 83, 65146518.CrossRefGoogle ScholarPubMed
Li, W. (1992). Genetic path network among quantitative characters in Bombyx mori L. Sericologia 32, 543548.Google Scholar
Maekawa, H., Takada, N., Mikitani, K., Ogura, T., Miyajima, N., Fujiwara, H., Kobayashi, M. & Ninaki, O. (1988). Nucleolus organizers in the wild silkworm Bombyx mandarina and the domesticated silkworm B. mori. Chromosoma 96, 263269.CrossRefGoogle Scholar
Maeki, K. (1981). The chromosome of the Lepidoptera. Tyô to Ga 32, 1328.Google Scholar
Michaille, J.-J., Garel, A. & Prudhomme, J.-C. (1990 a). Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori. Gene 86, 177184.CrossRefGoogle ScholarPubMed
Michaeille, J.-J., Mathavan, S., Gaillard, J. & Garel, A. (1990 b). The complete sequence of Mag, a new retrotransposon in Bombyx mori. Nucleic Acids Research 18, 674.CrossRefGoogle Scholar
Miller, J. C. & Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics 80, 437448.CrossRefGoogle ScholarPubMed
Murakami, A. & Imai, H. (1974). Cytological evidence for holocentric chromosomes of the silkworms, Bombyx mori and B. mandarina (Bombycidae, Lepidoptera). Chromosoma 47, 167178.CrossRefGoogle Scholar
Nadel, M. R., Goldsmith, M. R., Goplerud, J. & Kafatos, F. C. (1980 a). Specific protein synthesis in cellular differentiation. V. A secretory defect of chorion formation in the Grcol mutant of Bombyx mori. Developmental Biology 75, 4158.CrossRefGoogle Scholar
Nadel, M. R., Thireos, G. & Kafatos, F. C. (1980 b). Effect of the pleiotropic GrB mutation of Bombyx mori on chorion protein synthesis. Cell 20, 649658.CrossRefGoogle ScholarPubMed
Nagata, M., Tsuchida, K., Orikasa, C. & Suzuki, A. (1992). Ecdysteroid secretion in the non-molting larvae of the nm-g mutant of the silkworm, Bombyx mori. Journal of Sericultural Science of Japan 61, 400406.Google Scholar
Nakato, H., Toriyama, M., Izumi, S. & Tomino, S. (1990). Structure and expression of messenger RNA for a pupal cuticle protein of the silkworm. Insect Biochemistry 20, 667678.CrossRefGoogle Scholar
Narayanaswamy, T. K. & Govindan, R. (1989). Comparative susceptibility of some breeds of silkworm Bombyx mori L. to Aspergillus flavus Link. Sericologia 29, 3337.Google Scholar
Ogura, T., Okano, K., Tsuchida, K., Miyajima, N., Tanaka, H., Takada, N., Izumi, S., Tomino, S. & Maekawa, H. (1994). A defective non-LTR retrotransposon is dispersed throughout the genome of the silkworm, Bombyx mori. Chromosoma 103, 311323.CrossRefGoogle ScholarPubMed
Okazaki, S., Tsuchida, K., Maekawa, H., Ishikawa, H. & Fujiwara, H. (1993). Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm, Bombyx mori and other insects. Molecular and Cellular Biology 13, 14241432.Google ScholarPubMed
Osbom, T., Alexander, D. C. & Williams, B. (1987). Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theoretical and Applied Genetics 73, 350356.Google Scholar
Ott, J. (1991). Analysis of Human Genetic Linkage, revised edition. Baltimore: Johns Hopkins University Press.Google Scholar
Paterson, A. H., Lander, E. S., Hewitt, J. D., Peterson, S., Lincoln, S. E. & Tanksley, S. D. (1988). Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721726.CrossRefGoogle ScholarPubMed
Pinyarat, W., Shimada, T., Xu, W.-H., Sato, Y., Yamashita, O. & Kobayashi, M. (1995). Linkage analysis of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in the silkmoth, Bombyx mori. Genetical Research 65, 105111.CrossRefGoogle ScholarPubMed
Pollard-Knight, D., Read, C. A., Downes, M. J., Howard, L. A., Leadbetter, M. R., Pheby, S. A., Mcnaughton, E., Syms, A. & Brady, M. A. W. (1990). Nonradioactive nucleic acid detection by enhanced chemiluminescence using probes directly labeled with hoseradish peroxidase. Analytical Biochemistry 185, 8489.CrossRefGoogle Scholar
Promboon, A., Shimada, T., Fujiwara, H. & Kobayashi, M. Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm, Bombyx mori. Genetical Research 66, 17.CrossRefGoogle Scholar
Rasmussen, S. W. & Holm, P. B. (1982). The meiotic prophase in Bombyx mori. In Insect Ultrastructure, vol. 1 (ed. King, R. C. and Akai, H.), pp. 6185. New York and London: Plenum Publishing Co.CrossRefGoogle Scholar
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–481.CrossRefGoogle ScholarPubMed
Sakai, N., Mori, S., Izumi, S., Haino-Fukushima, K., Ogura, T., Maekawa, H. & Tomino, S. (1988). Structures and expression of mRNAs coding for major plasma proteins of Bombyx mori. Biochimica et Biophysica Ada 949, 224232.CrossRefGoogle ScholarPubMed
Sakurai, H., Fujii, T., Izumi, S. & Tomino, S. (1988). Structure and expression of gene coding for sex-specific storage protein of Bombyx mori. Journal of Biological Chemistry 263, 78767880.CrossRefGoogle ScholarPubMed
Sakurai, S. & Tsujita, M. (1976 a). Genetical and biochemical studies of pteridine granule membrane in larval hypodermal cells of the silkworm. I. Purification and characterization of the membrane protein from pteridine granules of a normal strain. Japanese Journal of Genetics 51, 3952.Google Scholar
Sakurai, S. & Tsujita, M. (1976 b). Genetical and biochemical studies of pteridine granule membrane in larval hypodermal cells of the silkworm. II. Genetic variations in membrane proteins of pteridine granules isolated fium several mutants with transparent larval skin. Japanese Journal of Genetics 51, 7989.Google Scholar
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning, a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Sato, Y. & Yamashita, O. (1991). Structure and expression of a gene coding for egg-specific protein in the silkworm, Bombyx mori. Insect Biochemistry 21, 495503.CrossRefGoogle Scholar
Sawada, H., Tsusué, M., Yamamoto, T. & Sakurai, S. (1990). Occurrence of xanthommatin containing pigment granules in the epidermal cells of the silkworm, Bombyx mori. Insect Biochemistry 20, 785792.CrossRefGoogle Scholar
Shimada, R., Hasegawa, T., Matsumoto, K., Agui, N. & Kobayashi, M. (1994). Polymorphism and linkage analysis of the prothoracicotropic hormone gene in the silkmoth, Bombyx mori. Genetical Research 63, 190195.CrossRefGoogle ScholarPubMed
Shimizu, K., Fujimori, H. & Sorita, S. (1993). Genetical identification of mutant characters in silkworm stocks. VI. Oily skin character in mutant stocks. Journal of Sericultural Science of Japan 62, 183186.Google Scholar
Shimizu, K., Tanaka, N. & Matsuno, M. (1980). Linkage analysis of a non-molting mutant of Bombyx mori and its application to the stock maintenance. Journal of Sericultural Science of Japan 49, 712.Google Scholar
Sonobe, H., Maotani, K. & Nakajima, H. (1986). Studies on embryonic diapause in the pnd mutant of the silkworm, Bombyx mori: genetic control of embryogenesis. Journal of Insect Physiology 32, 215220.CrossRefGoogle Scholar
Sturtevant, A. H. (1915). No crossing over in the female of the silkworm moth. American Naturalist 49, 4244.CrossRefGoogle Scholar
Tamura, T. (1977). Deficiency in xanthine dehydrogenase activity in the og and og1 mutants of the silkworm, Bombyx mori. Journal of Sericultural Science of Japan 46, 113119. In Japanese with English summary.Google Scholar
Tamura, T. (1983). Deficiency of xanthine dehydrogenase activity in the oq oily mutant of the silkworm, Bombyx mori. Japanese Journal of Genetics 58, 165168.Google Scholar
Tamura, T. & Akai, H. (1990). Comparative ultrastructure of larval hypodermal cell in normal and oily Bombyx mutants. Cytologia 55, 519530.CrossRefGoogle Scholar
Tamura, T., Kanda, T., Yukuhiro, K., Yasukouch, N., Hinomoto, N., Shimizu, K., Kosegawa, E. & Okajima, T. (1993). RFLP patterns detected by the transposons, mag and kl.4, in silkworm races. Gamma Field Symposia no. 32, Institute of Radiation Breeding, National Institutes Annual Reports, Ministry of Agriculture, Forestry, and Fisheries, Japan.Google Scholar
Tanksley, S. D. & Hewitt, J. (1988). Use of molecular markers in breeding for soluble solids content in tomato–a re-examination. Theoretical and Applied Genetics 75, 811823.CrossRefGoogle Scholar
Tayade, D. S. (1989). Genetic architecture of economic traits in some strains of mulberry silkworm Bombyx mori L. I. Combining ability analysis. Sericologia 29, 4360.Google Scholar
Tazima, Y. (1964). The Genetics of the Silkworm. London and Englewood Cliffs: Logos Press and Prentice-Hall, Inc.Google Scholar
Tazima, Y. (1989). Alteration of food habit of the domesticated silkworm, Bombyx mori. Sericologia 29, 437453.Google Scholar
Toyama, K. (1912). Maternal inheritance and Mendelism. Journal of Genetics 2, 352405.Google Scholar
Traut, W. (1987). Hypervariable Bkm DNA loci in a moth, Ephestia kuehniella: does transposition cause restriction fragment length polymorphism? Genetics 115, 493498.CrossRefGoogle Scholar
Udupa, S. M. & Gowda, V. (1988). Heterotic expression in silk productivity of different crosses of silkworm, Bombyx mori L. Sericologia 28, 395399.Google Scholar
Ueda, H., Mizuno, S. & Shimura, K. (1986). Transposable genetic element found in the 5′-flanking region of the fibroin H-chain gene in a genomic clone from the silkworm Bombyx mori. Journal of Molecular Biology 190, 319327.CrossRefGoogle Scholar
Ueno, K., Hui, C.-C., Fukuta, M. & Suzuki, Y. (1992). Molecular analysis of the deletion mutants in the E homeotic complex of the silkworm Bombyx mori. Development 114, 555563.CrossRefGoogle Scholar
Ueno, K., Nagata, T. & Suzuki, Y. (1995). Roles of homeotic genes in the Bombyx body plan. In Molecular Model Systems in the Lepidoptera (ed. Goldsmith, M. R. and Wilkins, A. S.), pp. 165180. New York: Cambridge University Press.CrossRefGoogle Scholar
Yamaguchi, K., Kikuchi, Y., Takagi, T., Kikuchi, A., Oyama, F., Shimura, K. & Mizuno, S. (1989). Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. Journal of Molecular Biology 210, 127139.CrossRefGoogle ScholarPubMed
Yamamoto, T., Gamo, T. & Hirobe, T. (1978). Genetical studies of the pigmented and non-diapausing egg mutant in Bombyx mori. Journal of Sericultural Science of Japan 47, 181185.Google Scholar