Skip to main content

Genomic selection in livestock populations

  • MICHAEL E. GODDARD (a1) (a2), BEN J. HAYES (a2) and THEO H. E. MEUWISSEN (a3)

Most traits of economic importance in livestock are either quantitative or complex. Despite considerable efforts, there has been only limited success in identifying the polymorphisms that cause variation in these traits. Nevertheless, selection based on estimated breeding values (BVs), calculated from data on phenotypic performance and pedigree has been very successful. Genomic tools, such as single nucleotide polymorphism (SNP) chips, have led to a new method of selection called ‘genomic selection’ in which dense SNP genotypes covering the genome are used to predict the BV. In this review we consider the statistical methodology for estimating BVs from SNP data, factors affecting the accuracy, the long-term response to genomic selection and the design of breeding programmes including the management of inbreeding.

Corresponding author
*Corresponding author: Department of Agriculture and Food Systems, University of Melbourne, Parkville 3010, Australia. e-mail:
Hide All
Bernardo, R. & Yu, J. (2007). Prospects for genome-wide selection for quantitative traits in maize. Crop Science 47, 10821090.
Boichard, D., Fritz, S., Rossignol, M. N., Guillaume, F., Colleau, J. J. & Druet, T. (2006). Implementation of marker assisted selection: practical lessons from dairy cattle. In Proceedings of the Eighth World Congress in Genetics Applied to Livestock Production, Electronic communication 22-03.
Chamberlain, A. J., McPartlan, H. & Goddard, M. E. (2007). The number of loci that affect milk production traits in dairy cattle. Genetics 177, 11171123.
Daetwyler, H. D., Hickey, J. M., Henshal, J. M., Dominik, S., Gredler, B., van der Werf, J. H. J. & Hayes, B. J. (2010). Accuracy of estimated genomic breeding values for wool and meat traits in a multi-breed sheep population. Animal Science In press.
Dalton, R. (2009). No bull: genes for better milk. Nature 457, 369.
Dekkers, J. C. (2004) Commercial application of marker and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science 82, E313E328.
Dekkers, J. C. M. & Hospital, F. (2002). Multifactorial genetics: the use of molecular genetics in the improvement of agricultural populations. Nature Reviews Genetics 3, 2232.
de Roos, A. P. W., Hayes, B. J., Spelman, R. & Goddard, M. E. (2008). Linkage disequilibrium and persistence of phase in Holstein Friesian, Jersey and Angus cattle. Genetics 179, 15031512.
Fernando, R. L. & Grossman, M. (1989). Marker-assisted selection using best linear unbiased prediction. Genetics, Selection, Evolution 21, 467477.
Gianola, D., Fernando, R. L. & Stella, A. (2006). Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173, 17611776.
Gianola, D., de Los Campos, G., Hill, W. G., Manfredi, E. & Fernando, R. (2009). Additive genetic variability and the Bayesian alphabet. Genetics 183, 347363.
Georges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A. T., Sargeant, L. S., Sorensen, A., Steele, M. R., Zhao, X., Womack, J. E. & Hoeschele, I. (1995). Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139, 907920.
Goddard, M. E. (1998). Gene based models for genetic evaluation–an alternative to BLUP? Proceedings of the Sixth World Congress in Genetics Applied to Livestock Production 26, 3336.
Goddard, M. E. (2009). Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136, 245257.
Goddard, M. E. & Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 10, 381391.
Grisart, B., Coppitiers, W., Farnir, F., Karim, L., Ford, C., Berzi, P., Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R., Georges, M. & Snell, R. (2002). Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1gene with major effect on milk yield and composition. Genome Research 12, 222231.
Habier, D., Fernando, R. L. & Dekkers, J. C. (2007). The impact of genetic relationship information on genome-assisted breeding values. Genetics 177, 23892397.
Harris, B. L. & Johnson, D. L. (2010). Genomic predictions for New Zealand dairy bulls and integration with national genetic evaluation. Journal of Dairy Science 93, 12431252.
Havenstein, G. B., Ferket, P. R.Scheideler, S. E. & Larson, B. T. (1994). Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed ‘typical’ 1957 and 1991 broiler diets. Poultry Science 73, 17851794.
Hayes, B. J. & Goddard, M. E. (2001). The distribution of the effects of genes affecting quantitative traits in livestock. Genetics, Selection, Evolution 33, 209229.
Hayes, B. J. & Goddard, M. E. (2008). Technical note: Prediction of breeding values using marker derived relationship matrices. Journal of Animal Science 86, 20892092.
Hayes, B. J., Bowman, P. J., Chamberlain, A. J. & Goddard, M. E. (2009 a). Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science 92, 433443.
Hayes, B. J., Visscher, P. M. & Goddard, M. E. (2009 b). Increased accuracy of selection by using the realised relationship matrix. Genetics Research 91, 4760.
Hayes, B. J., Pryce, J. E., Chamberlain, A. J., Bowman, P. J. & Goddard, M. E. (2010). Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk fat percentage and type in Holstein cattle as contrasting model traits. PLOS Genetics 23, 6:e1001139.
Heffner, E. L., Sorrels, M. R. & Jannink, J.-L. (2009). Genomic selection for crop improvement. Crop Science 49, 112.
Henderson, C. R. (1984). Applications of Linear Models in Animal Breeding. Guelph: University of Guelph Press.
Hill, W. G., Goddard, M. E. & Visscher, P. M. (2008). Data and theory point to mainly additive genetic variance for complex traits. Public Library of Science Genetics 4, e1000008.
König, S., Simianer, H. & Willam, A. (2009). Economic evaluation of genomic breeding programs. Journal of Dairy Science 92, 382391.
Lee, S. H., van der Werf, J. H., Hayes, B. J., Goddard, M. E. & Visscher, P. M. (2008). Predicting unobserved phenotypes for complex traits from whole-genome SNP data. Public Library of Science Genetics 4, e1000231.
Legarra, A. & Misztal, I. (2008). Technical note: Computing strategies in genome-wide selection. Journal of Dairy Science 91, 360366.
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. C., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. R., Slatkin, M., Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E, Gibson, G., Haines, J. L., Mackay, T. F. C., McCarroll, S. A. & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature 461, 747753.
Meuwissen, T. H. E. (1997). Maximizing the response to selection with a predefined rate of inbreeding. Journal of Animal Science 75, 934940.
Meuwissen, T. H. E. & Goddard, M. E. (1996). The use of marker haplotypes in animal breeding schemes. Genetics, Selection, Evolution 28, 161176.
Meuwissen, T. H., Solberg, T. R., Shepherd, R. & Woolliams, J. A. (2009). A fast algorithm for BayesB type of prediction of genome-wide estimates of genetic value. Genetics, Selection, Evolution 5, 4142.
Meuwissen, T. H. E., Hayes, B. J. & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 18191829.
Meuwissen, T. H. E. (2009). Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genetics, Selection, Evolution 41, 3544.
Meuwissen, T. H. E. & Goddard, M. E. (2010). Accurate prediction of genetic values for complex traits by whole genome resequencing. Genetics 185, 623631.
Moser, G., Tier, B., Crump, R. E., Khatkar, M. S. & Raadsma, H. W. (2009). A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genetics, Selection, Evolution 31, 4156.
Muir, W. M. (2007). Comparison of genomic and traditional BLUP estimated breeding value accuracy and selection response under alternative trait and genomic parameters. Journal of Animal Breeding and Genetics 124, 342355.
Neimann-Sorensen, A. & Robertson, A. (1961). The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agriculturae Scandinavia 11, 163196.
Pryce, J. E., Goddard, M. E., Raadsma, H. W. & Hayes, B. J. (2010). Deterministic models of breeding scheme designs that incorporate genomic selection. Journal of Dairy Science 93: 54555466.
Rendel, J. (1961). Relationships between blood groups and the fat percentage of the milk in cattle. Nature 189, 408409.
Schaeffer, L. R. (2006) Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics 123, 218223.
Shepherd, R. K., Meuwissen, T. H. E. & Woolliams, J. A. (2010). Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers. BMC Bioinformatics 11, 529. [Epub ahead of print]
Sonesson, A. K. & Meuwissen, T. H. E. (2009). Testing strategies for genomic selection in aquaculture breeding programs. Genetics, Selection, Evolution 30, 41:37.
Sonesson, A. K., Meuwissen, T. H. E. & Goddard, M. E. (2010 a). The use of communal rearing of families and DNA pooling in multi-trait aquaculture genomic selection schemes. Genetics Selection Evolution 42:41.
Sonesson, A. K., Woolliams, J. A. & Meuwissen, T. H. E. (2010 b). Maximising Genetic Gain Whilst Controlling Rates Of Genomic Inbreeding Using Genomic Optimum Contribution Selection. Proceedings of the Ninth World Congress on Genetics Applied to Livestock Production. Paper 0892.
VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science 91, 44144423.
VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F. & Schenkel, F. (2009). Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science 92, 1624.
Van Vleck, L. D., Westall, R. A. & Scneider, J. C. (1986). Genetic change in milk yield estimated from simultaneous genetic evaluation of bulls and cows. Journal of Dairy Science 69, 29632965.
Verbyla, K. L., Bowman, P. J., Hayes, B. J. & Goddard, M. E. (2009). Accuracy of genomic selection using stochastic search variable selection in Australian Holstein Friesian dairy cattle. Genetics Research 91, 307311.
Wiggans, G., Cooper, T., VanRaden, P. & Silva, M. (2010). Increased reliability of genetic evaluations for dairy cattle in the United States from use of genomic information. In Proceedings of the Ninth World Congress in Genetics Applied to Livestock Production, Electronic communication 476.
Wray, N. R. & Goddard, M. E. (1994). Increasing long term response to selection. Genetics, Selection, Evolution 26, 431451.
Wray, N. R., Goddard, M. E. & Visscher, P. M. (2007). Prediction of individual risk to disease from genome-wide association studies. Genome Research 17, 15201528.
Yang, J., Beben, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. F., Heath, A. C., Martin, N. G., Montgomery, G. W., Goddard, M. E. & Visscher, P. M. (2010). Missing heritability of human height explained by genomic relationships. Nature Genetics 42: 565569.
Yi, N. & Xu, S. (2008). Bayesian LASSO for quantitative trait loci mapping. Genetics 179, 10451055.
Zhong, S., Dekker, J. C. M., Fernando, R. L. & Jannink, J.-L. (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182, 355364.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 13
Total number of PDF views: 155 *
Loading metrics...

Abstract views

Total abstract views: 491 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th March 2018. This data will be updated every 24 hours.